This commit is contained in:
geoffsee
2025-06-25 13:20:59 -04:00
committed by Geoff Seemueller
parent 21d6c8604e
commit 554096abb2
86 changed files with 556 additions and 508 deletions

View File

@@ -0,0 +1,117 @@
/* eslint-disable no-useless-escape */
const a = {
'Can you search for the latest quantum computing breakthroughs?': "I don't have web access.",
};
const b = {
'Calculate the number of unique ways to arrange the letters in the word SUCCESS.': `Alright, let's tackle 'SUCCESS' and see just how unique it can get!
### Step 1: Count the Letters
The word 'SUCCESS' has 7 letters, but its no free-for-all—there are repeats!
- S: 3 times
- U: 1 time
- C: 2 times
- E: 1 time
### Step 2: The Formula for Permutations with Repetition
When letters repeat, we divide to avoid overcounting. The magic formula is:
$$
\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}
$$
Here, (n) is the total number of letters, and (k_i) are the frequencies of each unique letter.
### Step 3. Plug in the Values
Lets compute:
$$
\frac{7!}{3! \cdot 1! \cdot 2! \cdot 1!} = 420
$$
### Step 4: Reveal the Result
There are 420 unique arrangements of 'SUCCESS'. Mathematically satisfying, isnt it? Its as if every version of success gets its own unique permutation!`,
'Calculate the number of unique ways to arrange the letters in the word MISSISSIPPI.': `Ready for some permutation wizardry? Lets decode 'MISSISSIPPI'!
### Step 1: Count the Letters
'MISSISSIPPI' has 11 letters. But like a social network with cliques, some letters appear in multiples:
- M: 1
- I: 4
- S: 4
- P: 2
### Step 2: Apply the Permutation Formula for Repetition
The formula for such a case is:
$$
\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!}
$$
### Step 3: Plug in the Values
Heres where we let the math do its magic:
$$
\frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!}
$$
### Step 4: Simplify Step-by-Step
Lets break it down:
- (11! = 39,916,800)
- (4! = 24)
- (2! = 2)
#### Substituting these values:
$$
\frac{39,916,800}{1 \cdot 24 \cdot 24 \cdot 2} = 34,650
$$
### Step 5: The Grand Finale
There are 34,650 unique arrangements of 'MISSISSIPPI'.`,
};
const c = {
'Render a Greek statue with warm marble tones and realistic proportions.':
"I don't have the ability to generate images right now. ",
};
const d = {
'Demonstrate markdown formatted text.': `
## Headers
~~~markdown
# Large Header
## Medium Header
### Small Header
~~~
## Ordered Lists
1. First Item
2. Second Item
1. Subitem 1
2. Subitem 2
3. Third Item
## Unordered Lists
- First Item
- Second Item
- Subitem 1
- Subitem 2
## Links
[Visit OpenAI](https://openai.com/)
## Images
![Example Image](example.jpg)
## Inline Code
\`console.log('Hello, Markdown!')\`
## Code Blocks
~~~javascript
console.log(marked.parse('A Description List:\\n'
+ ': Topic 1 : Description 1\\n'
+ ': **Topic 2** : *Description 2*'));
~~~
## Tables
| Name | Value |
|---------|-------|
| Item A | 10 |
| Item B | 20 |
## Blockquotes
> Markdown makes writing beautiful.
> - Markdown Fan
## Horizontal Rule
---
## Font: Bold and Italic
**Bold Text**
*Italic Text*
## Font: Strikethrough
~~Struck-through text~~
## Math
~~~markdown
$$
c = \\\\pm\\\\sqrt{a^2 + b^2}
$$`,
};
export default { a, b, c, d };