improves interoperability of model providers, local and remote providers can be used together seemlessly

This commit is contained in:
geoffsee
2025-06-09 13:54:37 -04:00
committed by Geoff Seemueller
parent ad7dc5c0a6
commit f29bb6779c
14 changed files with 526 additions and 234 deletions

View File

@@ -3,7 +3,6 @@ import OpenAI from 'openai';
import ChatSdk from '../lib/chat-sdk.ts';
import Message from "../models/Message.ts";
import O1Message from "../models/O1Message.ts";
import {getModelFamily, ModelFamily, SUPPORTED_MODELS} from "@open-gsio/ai/supported-models";
import {OpenAiChatSdk} from "../providers/openai.ts";
import {GroqChatSdk} from "../providers/groq.ts";
import {ClaudeChatSdk} from "../providers/claude.ts";
@@ -13,6 +12,9 @@ import {GoogleChatSdk} from "../providers/google.ts";
import {XaiChatSdk} from "../providers/xai.ts";
import {CerebrasSdk} from "../providers/cerebras.ts";
import {CloudflareAISdk} from "../providers/cloudflareAi.ts";
import {OllamaChatSdk} from "../providers/ollama";
import {MlxOmniChatSdk} from "../providers/mlx-omni";
import {ProviderRepository} from "../providers/_ProviderRepository";
export interface StreamParams {
env: Env;
@@ -110,24 +112,97 @@ const ChatService = types
cerebras: (params: StreamParams, dataHandler: Function) =>
CerebrasSdk.handleCerebrasStream(params, dataHandler),
cloudflareAI: (params: StreamParams, dataHandler: Function) =>
CloudflareAISdk.handleCloudflareAIStream(params, dataHandler)
CloudflareAISdk.handleCloudflareAIStream(params, dataHandler),
ollama: (params: StreamParams, dataHandler: Function) =>
OllamaChatSdk.handleOllamaStream(params, dataHandler),
mlx: (params: StreamParams, dataHandler: Function) =>
MlxOmniChatSdk.handleMlxOmniStream(params, dataHandler),
};
return {
async getSupportedModels() {
const isLocal = self.env.OPENAI_API_ENDPOINT && self.env.OPENAI_API_ENDPOINT.includes("localhost");
console.log({isLocal})
if(isLocal) {
console.log("getting local models")
const openaiClient = new OpenAI({baseURL: self.env.OPENAI_API_ENDPOINT})
const models = await openaiClient.models.list();
return Response.json(
models.data
.filter(model => model.id.includes("mlx"))
.map(model => model.id));
getSupportedModels: flow(function* ():
Generator<Promise<unknown>, Response, unknown> {
// ----- Helpers ----------------------------------------------------------
const logger = console;
// ----- 1. Try cached value ---------------------------------------------
try {
const cached = yield self.env.KV_STORAGE.get('supportedModels');
if (cached) {
const parsed = JSON.parse(cached as string);
if (Array.isArray(parsed)) {
logger.info('Cache hit returning supportedModels from KV');
return new Response(JSON.stringify(parsed), { status: 200 });
}
logger.warn('Cache entry malformed refreshing');
}
} catch (err) {
logger.error('Error reading/parsing supportedModels cache', err);
}
return Response.json(SUPPORTED_MODELS);
},
// ----- 2. Build fresh list ---------------------------------------------
const providerRepo = new ProviderRepository(self.env);
const providers = providerRepo.getProviders();
const providerModels = new Map<string, any[]>();
const modelMeta = new Map<string, any>();
for (const provider of providers) {
if (!provider.key) continue;
logger.info(`Fetching models for provider «${provider.name}»`);
const openai = new OpenAI({ apiKey: provider.key, baseURL: provider.endpoint });
// 2a. List models
try {
const listResp = yield openai.models.list(); // < async
const models = ('data' in listResp) ? listResp.data : listResp;
providerModels.set(provider.name, models);
// 2b. Retrieve metadata
for (const mdl of models) {
try {
const meta = yield openai.models.retrieve(mdl.id); // < async
modelMeta.set(mdl.id, { ...mdl, ...meta });
} catch (err) {
// logger.error(`Metadata fetch failed for ${mdl.id}`, err);
modelMeta.set(mdl.id, {provider: provider.name, mdl});
}
}
} catch (err) {
logger.error(`Model list failed for provider «${provider.name}»`, err);
}
}
// ----- 3. Merge results -------------------------------------------------
const resultMap = new Map<string, any>();
for (const [provName, models] of providerModels) {
for (const mdl of models) {
resultMap.set(mdl.id, {
id: mdl.id,
provider: provName,
...(modelMeta.get(mdl.id) ?? mdl),
});
}
}
const resultArr = Array.from(resultMap.values());
// ----- 4. Cache fresh list ---------------------------------------------
try {
yield self.env.KV_STORAGE.put(
'supportedModels',
JSON.stringify(resultArr),
{ expirationTtl: 60 * 60 * 24 }, // 24h
);
logger.info('supportedModels cache refreshed');
} catch (err) {
logger.error('KV put failed for supportedModels', err);
}
// ----- 5. Return --------------------------------------------------------
return new Response(JSON.stringify(resultArr), { status: 200 });
}),
setActiveStream(streamId: string, stream: any) {
const validStream = {
name: stream?.name || "Unnamed Stream",
@@ -179,13 +254,13 @@ const ChatService = types
const {streamConfig, streamParams, controller, encoder, streamId} = params;
const useModelFamily = () => {
return !self.env.OPENAI_API_ENDPOINT || !self.env.OPENAI_API_ENDPOINT.includes("localhost") ? getModelFamily(streamConfig.model) : "openai";
return ProviderRepository.getModelFamily(streamConfig.model, self.env)
}
const modelFamily = useModelFamily();
const modelFamily = await useModelFamily();
const useModelHandler = () => {
return !self.env.OPENAI_API_ENDPOINT || !self.env.OPENAI_API_ENDPOINT.includes("localhost") ? modelHandlers[modelFamily as ModelFamily] : modelHandlers.openai;
return modelHandlers[modelFamily]
}
const handler = useModelHandler();