const a = { "Can you search for the latest quantum computing breakthroughs?": "I don't have web access.", }; const b = { "Calculate the number of unique ways to arrange the letters in the word 'SUCCESS'.": ` Alright, let's tackle 'SUCCESS' and see just how unique it can get! 1. Step 1: Count the Letters The word 'SUCCESS' has 7 letters, but it’s no free-for-all—there are repeats! - S: 3 times - U: 1 time - C: 2 times - E: 1 time Erdős would call this a combinatorial party with some guests arriving multiple times. 2. Step 2: The Formula for Permutations with Repetition When letters repeat, we divide to avoid overcounting. The magic formula is: $$ \frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!} $$ Here, (n) is the total number of letters, and (k_i) are the frequencies of each unique letter. 3. Step 3: Plug in the Values Let’s compute: $$ \frac{7!}{3! \cdot 1! \cdot 2! \cdot 1!} = 420 $$ 4. Step 4: Reveal the Result There are **420 unique arrangements** of 'SUCCESS'. Mathematically satisfying, isn’t it? It’s as if every version of success gets its own unique permutation!`, "Calculate the number of unique ways to arrange the letters in the word 'MISSISSIPPI'.": `Ready for some permutation wizardry? Let’s decode 'MISSISSIPPI'! 1. Step 1: Count the Letters 'MISSISSIPPI' has 11 letters. But like a social network with cliques, some letters appear in multiples: - M: 1 - I: 4 - S: 4 - P: 2 2. Step 2: Apply the Permutation Formula for Repetition The formula for such a case is: $$ \frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_m!} $$ 3. Step 3: Plug in the Values Here’s where we let the math do its magic: $$ \frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!} $$ 4. Step 4: Simplify Step-by-Step Let’s break it down: - (11! = 39,916,800) - (4! = 24) - (2! = 2) #### Substituting these values: $$ \frac{39,916,800}{1 \cdot 24 \cdot 24 \cdot 2} = 34,650 $$ 5. Step 5: The Grand Finale There are **34,650 unique arrangements** of 'MISSISSIPPI'. Erdős would marvel at the sheer elegance of these numbers—much like the way rivers meander through the land, permutations flow through possibilities.`, }; const c = { // c remains unchanged as it contains image generation prompts "Render a Greek statue with warm marble tones and realistic proportions.": "I don't have the ability to generate images right now. ", }; const d = { "Demonstrate all outputs.": ` # Comprehensive Markdown Showcase ## Headers ~~~markdown # Large Header ## Medium Header ### Small Header ~~~ ## Ordered Lists ~~~markdown 1. First Item 2. Second Item 1. Subitem 1 2. Subitem 2 3. Third Item ~~~ ## Unordered Lists ~~~markdown - First Item - Second Item - Subitem 1 - Subitem 2 ~~~ ## Links ~~~markdown [Visit OpenAI](https://openai.com/) ~~~ ## Images ~~~markdown ![Example Image](example.jpg) ~~~ ![Example Image](example.jpg) ## Inline Code ~~~markdown \`console.log('Hello, Markdown!')\` ~~~ ## Code Blocks \`\`\`markdown ~~~javascript console.log(marked.parse('A Description List:\\n' + ': Topic 1 : Description 1\\n' + ': **Topic 2** : *Description 2*')); ~~~ \`\`\` ## Tables ~~~markdown | Name | Value | |---------|-------| | Item A | 10 | | Item B | 20 | ~~~ ## Blockquotes ~~~markdown > Markdown makes writing beautiful. > - Markdown Fan ~~~ ## Horizontal Rule ~~~markdown --- ~~~ ## Font: Bold and Italic ~~~markdown **Bold Text** *Italic Text* ~~~ ## Font: Strikethrough ~~~markdown ~~Struck-through text~~ ~~~ --- ## Math: Inline This is block level katex: ~~~markdown $$ c = \\\\pm\\\\sqrt{a^2 + b^2} $$ ~~~ ## Math: Block This is inline katex ~~~markdown $c = \\\\pm\\\\sqrt{a^2 + b^2}$ ~~~ `, }; export default { a, b, c, d };