import { OpenAI } from 'openai'; import { ChatCompletionCreateParamsStreaming } from 'openai/resources/chat/completions/completions'; import { Utils } from '../lib/utils'; import { BaseChatProvider, CommonProviderParams } from './chat-stream-provider'; export class MlxOmniChatProvider extends BaseChatProvider { getOpenAIClient(param: CommonProviderParams): OpenAI { return new OpenAI({ baseURL: 'http://localhost:10240', apiKey: param.env.MLX_API_KEY, }); } getStreamParams( param: CommonProviderParams, safeMessages: any[], ): ChatCompletionCreateParamsStreaming { const baseTuningParams = { temperature: 0.86, top_p: 0.98, presence_penalty: 0.1, frequency_penalty: 0.3, max_tokens: param.maxTokens as number, }; const getTuningParams = () => { return baseTuningParams; }; let completionRequest: ChatCompletionCreateParamsStreaming = { model: param.model, stream: true, messages: safeMessages, }; const client = this.getOpenAIClient(param); const isLocal = client.baseURL.includes('localhost'); if (isLocal) { completionRequest['messages'] = Utils.normalizeWithBlanks(safeMessages); completionRequest['stream_options'] = { include_usage: true, }; } else { completionRequest = { ...completionRequest, ...getTuningParams() }; } return completionRequest; } async processChunk(chunk: any, dataCallback: (data: any) => void): Promise { const isLocal = chunk.usage !== undefined; if (isLocal && chunk.usage) { dataCallback({ type: 'chat', data: { choices: [ { delta: { content: '' }, logprobs: null, finish_reason: 'stop', }, ], }, }); return true; // Break the stream } dataCallback({ type: 'chat', data: chunk }); return false; // Continue the stream } } export class MlxOmniChatSdk { private static provider = new MlxOmniChatProvider(); static async handleMlxOmniStream(ctx: any, dataCallback: (data: any) => any) { if (!ctx.messages?.length) { return new Response('No messages provided', { status: 400 }); } return this.provider.handleStream( { systemPrompt: ctx.systemPrompt, preprocessedContext: ctx.preprocessedContext, maxTokens: ctx.maxTokens, messages: Utils.normalizeWithBlanks(ctx.messages), model: ctx.model, env: ctx.env, }, dataCallback, ); } }