move cli into crates and stage for release

This commit is contained in:
geoffsee
2025-08-31 13:23:50 -04:00
parent 9e9aa69769
commit 0580dc8c5e
26 changed files with 604 additions and 447 deletions

View File

@@ -1,389 +0,0 @@
#!/bin/bash
# Cross-platform build script for predict-otron-9000
# Builds all workspace crates for common platforms
set -euo pipefail
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
# Configuration
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
PROJECT_ROOT="$(cd "${SCRIPT_DIR}/.." && pwd)"
BUILD_DIR="${PROJECT_ROOT}/build"
TIMESTAMP=$(date +%Y%m%d_%H%M%S)
# Supported platforms
PLATFORMS=(
"x86_64-unknown-linux-gnu"
"x86_64-pc-windows-msvc"
"x86_64-apple-darwin"
"aarch64-apple-darwin"
"aarch64-unknown-linux-gnu"
)
# Main binaries to build
MAIN_BINARIES=(
"predict-otron-9000"
"embeddings-engine"
)
# Inference engine binaries (with bin feature)
INFERENCE_BINARIES=(
"gemma_inference"
"llama_inference"
)
# Other workspace binaries
OTHER_BINARIES=(
"helm-chart-tool"
)
print_header() {
echo -e "${BLUE}================================${NC}"
echo -e "${BLUE}$1${NC}"
echo -e "${BLUE}================================${NC}"
}
print_info() {
echo -e "${GREEN}[INFO]${NC} $1"
}
print_warn() {
echo -e "${YELLOW}[WARN]${NC} $1"
}
print_error() {
echo -e "${RED}[ERROR]${NC} $1"
}
check_dependencies() {
print_header "Checking Dependencies"
# Check rust
if ! command -v cargo >/dev/null 2>&1; then
print_error "Rust/Cargo is not installed"
exit 1
fi
# Check cargo-leptos for WASM frontend
if ! command -v cargo-leptos >/dev/null 2>&1; then
print_warn "cargo-leptos not found. Installing..."
cargo install cargo-leptos
fi
print_info "All dependencies available"
}
install_targets() {
print_header "Installing Rust Targets"
for platform in "${PLATFORMS[@]}"; do
print_info "Installing target: $platform"
rustup target add "$platform" || {
print_warn "Failed to install target $platform (may not be available on this host)"
}
done
# Add WASM target for leptos
print_info "Installing wasm32-unknown-unknown target for Leptos"
rustup target add wasm32-unknown-unknown
}
create_build_dirs() {
print_header "Setting up Build Directory"
rm -rf "$BUILD_DIR"
mkdir -p "$BUILD_DIR"
for platform in "${PLATFORMS[@]}"; do
mkdir -p "$BUILD_DIR/$platform"
done
mkdir -p "$BUILD_DIR/web"
print_info "Build directories created"
}
build_leptos_app() {
print_header "Building Leptos Web Frontend"
cd "$PROJECT_ROOT/crates/leptos-app"
# Build the WASM frontend
print_info "Building WASM frontend with cargo-leptos..."
cargo leptos build --release || {
print_error "Failed to build Leptos WASM frontend"
return 1
}
# Copy built assets to build directory
if [ -d "target/site" ]; then
cp -r target/site/* "$BUILD_DIR/web/"
print_info "Leptos frontend built and copied to $BUILD_DIR/web/"
else
print_error "Leptos build output not found at target/site"
return 1
fi
cd "$PROJECT_ROOT"
}
get_platform_features() {
local platform="$1"
local features=""
case "$platform" in
*-apple-darwin)
# macOS uses Metal but routes to CPU for Gemma stability
features=""
;;
*-unknown-linux-gnu|*-pc-windows-msvc)
# Linux and Windows can use CUDA if available
features=""
;;
*)
features=""
;;
esac
echo "$features"
}
build_binary_for_platform() {
local binary_name="$1"
local platform="$2"
local package_name="$3"
local additional_args="$4"
print_info "Building $binary_name for $platform"
local features=$(get_platform_features "$platform")
local feature_flag=""
if [ -n "$features" ]; then
feature_flag="--features $features"
fi
# Build command
local build_cmd="cargo build --release --target $platform --bin $binary_name"
if [ -n "$package_name" ]; then
build_cmd="$build_cmd --package $package_name"
fi
if [ -n "$additional_args" ]; then
build_cmd="$build_cmd $additional_args"
fi
if [ -n "$feature_flag" ]; then
build_cmd="$build_cmd $feature_flag"
fi
print_info "Running: $build_cmd"
if eval "$build_cmd"; then
# Copy binary to build directory
local target_dir="target/$platform/release"
local binary_file="$binary_name"
# Add .exe extension for Windows
if [[ "$platform" == *-pc-windows-msvc ]]; then
binary_file="$binary_name.exe"
fi
if [ -f "$target_dir/$binary_file" ]; then
cp "$target_dir/$binary_file" "$BUILD_DIR/$platform/"
print_info "$binary_name built and copied for $platform"
else
print_error "Binary not found: $target_dir/$binary_file"
return 1
fi
else
print_error "Failed to build $binary_name for $platform"
return 1
fi
}
build_for_platform() {
local platform="$1"
print_header "Building for $platform"
local failed_builds=()
# Build main binaries
for binary in "${MAIN_BINARIES[@]}"; do
if ! build_binary_for_platform "$binary" "$platform" "$binary" ""; then
failed_builds+=("$binary")
fi
done
# Build inference engine binaries with bin feature
for binary in "${INFERENCE_BINARIES[@]}"; do
if ! build_binary_for_platform "$binary" "$platform" "inference-engine" "--features bin"; then
failed_builds+=("$binary")
fi
done
# Build other workspace binaries
for binary in "${OTHER_BINARIES[@]}"; do
if ! build_binary_for_platform "$binary" "$platform" "$binary" ""; then
failed_builds+=("$binary")
fi
done
if [ ${#failed_builds[@]} -eq 0 ]; then
print_info "✓ All binaries built successfully for $platform"
else
print_warn "Some builds failed for $platform: ${failed_builds[*]}"
fi
}
create_archives() {
print_header "Creating Release Archives"
cd "$BUILD_DIR"
for platform in "${PLATFORMS[@]}"; do
if [ -d "$platform" ] && [ -n "$(ls -A "$platform" 2>/dev/null)" ]; then
local archive_name="predict-otron-9000-${platform}-${TIMESTAMP}"
print_info "Creating archive for $platform"
# Create platform-specific directory with all files
mkdir -p "$archive_name"
cp -r "$platform"/* "$archive_name/"
# Add web assets to each platform archive
if [ -d "web" ]; then
mkdir -p "$archive_name/web"
cp -r web/* "$archive_name/web/"
fi
# Create README for the platform
cat > "$archive_name/README.txt" << EOF
Predict-Otron-9000 - Platform: $platform
Build Date: $(date)
========================================
Binaries included:
$(ls -1 "$platform")
Web Frontend:
- Located in the 'web' directory
- Serve with any static file server on port 8788 or configure your server
Usage:
1. Start the main server: ./predict-otron-9000
2. Start embeddings service: ./embeddings-engine
3. Access web interface at http://localhost:8080 (served by main server)
For more information, visit: https://github.com/geoffsee/predict-otron-9000
EOF
# Create tar.gz archive
tar -czf "${archive_name}.tar.gz" "$archive_name"
rm -rf "$archive_name"
print_info "✓ Created ${archive_name}.tar.gz"
else
print_warn "No binaries found for $platform, skipping archive"
fi
done
cd "$PROJECT_ROOT"
}
generate_build_report() {
print_header "Build Report"
echo "Build completed at: $(date)"
echo "Build directory: $BUILD_DIR"
echo ""
echo "Archives created:"
ls -la "$BUILD_DIR"/*.tar.gz 2>/dev/null || echo "No archives created"
echo ""
echo "Platform directories:"
for platform in "${PLATFORMS[@]}"; do
if [ -d "$BUILD_DIR/$platform" ]; then
echo " $platform:"
ls -la "$BUILD_DIR/$platform" | sed 's/^/ /'
fi
done
if [ -d "$BUILD_DIR/web" ]; then
echo ""
echo "Web frontend assets:"
ls -la "$BUILD_DIR/web" | head -10 | sed 's/^/ /'
if [ $(ls -1 "$BUILD_DIR/web" | wc -l) -gt 10 ]; then
echo " ... and $(( $(ls -1 "$BUILD_DIR/web" | wc -l) - 10 )) more files"
fi
fi
}
main() {
print_header "Predict-Otron-9000 Cross-Platform Build Script"
cd "$PROJECT_ROOT"
check_dependencies
install_targets
create_build_dirs
# Build Leptos web frontend first
build_leptos_app
# Build for each platform
for platform in "${PLATFORMS[@]}"; do
build_for_platform "$platform"
done
create_archives
generate_build_report
print_header "Build Complete!"
print_info "All artifacts are available in: $BUILD_DIR"
}
# Handle command line arguments
case "${1:-}" in
--help|-h)
echo "Usage: $0 [options]"
echo ""
echo "Cross-platform build script for predict-otron-9000"
echo ""
echo "Options:"
echo " --help, -h Show this help message"
echo " --platforms Show supported platforms"
echo " --clean Clean build directory before building"
echo ""
echo "Supported platforms:"
for platform in "${PLATFORMS[@]}"; do
echo " - $platform"
done
echo ""
echo "Prerequisites:"
echo " - Rust toolchain with rustup"
echo " - cargo-leptos (will be installed if missing)"
echo " - Platform-specific toolchains for cross-compilation"
echo ""
exit 0
;;
--platforms)
echo "Supported platforms:"
for platform in "${PLATFORMS[@]}"; do
echo " - $platform"
done
exit 0
;;
--clean)
print_info "Cleaning build directory..."
rm -rf "$BUILD_DIR"
print_info "Build directory cleaned"
;;
esac
main "$@"

View File

@@ -1,19 +0,0 @@
#!/usr/bin/env sh
set -e
SCRIPT_DIR="$(cd "$(dirname "$0")" && pwd)"
TEMP_DIR="$SCRIPT_DIR/temp"
mkdir -p "$TEMP_DIR"
cp "$SCRIPT_DIR/cli.ts" "$TEMP_DIR/cli.ts"
cp "$SCRIPT_DIR/../package.json" "$TEMP_DIR/package.json"
(
cd "$TEMP_DIR"
bun i
bun build ./cli.ts --compile --outfile "$SCRIPT_DIR/cli"
)
rm -rf "$TEMP_DIR"

View File

@@ -1,340 +0,0 @@
#!/usr/bin/env bun
import OpenAI from "openai";
import { parseArgs } from "util";
// =====================
// Config
// =====================
const DEFAULT_MODEL = "gemma-3-1b-it";
const DEFAULT_MAX_TOKENS = 256;
// Toggle this to reduce log overhead during timing runs
const PRINT_CHUNK_DEBUG = false;
// How many rows to show in the timing tables
const SHOW_FIRST_N = 3;
const SHOW_SLOWEST_N = 3;
// =====================
// Helpers
// =====================
const now = () => performance.now();
type ChunkStat = {
index: number;
tSinceRequestStartMs: number;
dtSincePrevMs: number;
contentChars: number;
};
function printHelp() {
console.log(`
Usage: bun client_cli.ts [options] [prompt]
Simple CLI tool for testing the local OpenAI-compatible API server.
Options:
--model <model> Model to use (default: ${DEFAULT_MODEL})
--prompt <prompt> The prompt to send (can also be provided as positional argument)
--list-models List all available models from the server
--help Show this help message
Examples:
./cli.ts "What is the capital of France?"
./cli.ts --model gemma-3-1b-it --prompt "Hello, world!"
./cli.ts --prompt "Who was the 16th president of the United States?"
./cli.ts --list-models
The server should be running at http://localhost:8080
Start it with: ./run_server.sh
`);
}
const { values, positionals } = parseArgs({
args: process.argv.slice(2),
options: {
model: { type: "string" },
prompt: { type: "string" },
help: { type: "boolean" },
"list-models": { type: "boolean" },
},
strict: false,
allowPositionals: true,
});
async function requestLocalOpenAI(model: string, userPrompt: string) {
const openai = new OpenAI({
baseURL: "http://localhost:8080/v1",
apiKey: "not used",
});
try {
console.log("[DEBUG] Creating chat completion request...");
return openai.chat.completions.create({
model,
max_tokens: DEFAULT_MAX_TOKENS,
stream: true,
messages: [
{
role: "system",
content: "You are a helpful assistant who responds thoughtfully and concisely.",
},
{ role: "user", content: userPrompt },
],
});
} catch (e: any) {
console.error("[ERROR] Failed to connect to local OpenAI server:", e.message);
console.error("[HINT] Make sure the server is running at http://localhost:8080");
console.error("[HINT] Start it with: ./run_server.sh");
throw e;
}
}
async function listModels() {
const openai = new OpenAI({
baseURL: "http://localhost:8080/v1",
apiKey: "not used",
});
try {
const models = await openai.models.list();
console.log(`[INFO] Available models from http://localhost:8080/v1:`);
console.log("---");
if (models.data && models.data.length > 0) {
models.data.forEach((model, index) => {
console.log(`${index + 1}. ${model.id}`);
console.log(` Owner: ${model.owned_by}`);
console.log(` Created: ${new Date(model.created * 1000).toISOString()}`);
console.log("");
});
console.log(`Total: ${models.data.length} models available`);
} else {
console.log("No models found.");
}
} catch (e: any) {
console.error("[ERROR] Failed to fetch models from local OpenAI server:", e.message);
console.error("[HINT] Make sure the server is running at http://localhost:8080");
console.error("[HINT] Start it with: ./run_server.sh");
throw e;
}
}
// =====================
// Timing math
// =====================
function median(nums: number[]) {
if (nums.length === 0) return 0;
const s = [...nums].sort((a, b) => a - b);
const mid = Math.floor(s.length / 2);
return s.length % 2 ? s[mid] : (s[mid - 1] + s[mid]) / 2;
}
function quantile(nums: number[], q: number) {
if (nums.length === 0) return 0;
const s = [...nums].sort((a, b) => a - b);
const pos = (s.length - 1) * q;
const base = Math.floor(pos);
const rest = pos - base;
return s[base + 1] !== undefined ? s[base] + rest * (s[base + 1] - s[base]) : s[base];
}
function ms(n: number) {
return `${n.toFixed(1)} ms`;
}
// =====================
// Main
// =====================
async function main() {
const tProgramStart = now();
if (values.help) {
printHelp();
process.exit(0);
}
if (values["list-models"]) {
try {
await listModels();
process.exit(0);
} catch (error: any) {
console.error("\n[ERROR] Failed to list models:", error.message);
process.exit(1);
}
}
const prompt = values.prompt ?? positionals[0];
if (!prompt) {
console.error("[ERROR] No prompt provided!");
printHelp();
process.exit(1);
}
const model = values.model || DEFAULT_MODEL;
console.log(`[INFO] Using model: ${model}`);
console.log(`[INFO] Prompt: ${prompt}`);
console.log(`[INFO] Connecting to: http://localhost:8080/v1`);
console.log("---");
const tBeforeRequest = now();
try {
console.log("[DEBUG] Initiating request to OpenAI server...");
const response = await requestLocalOpenAI(model, prompt);
const tAfterCreate = now();
// Streaming handling + timing
let fullResponse = "";
let chunkCount = 0;
const chunkStats: ChunkStat[] = [];
let tFirstChunk: number | null = null;
let tPrevChunk: number | null = null;
console.log("[INFO] Waiting for model to generate response...");
let loadingInterval;
if (!PRINT_CHUNK_DEBUG) {
// Show loading animation only if not in debug mode
const loadingChars = ['⠋', '⠙', '⠹', '⠸', '⠼', '⠴', '⠦', '⠧', '⠇', '⠏'];
let i = 0;
process.stdout.write('\r[INFO] Thinking ');
loadingInterval = setInterval(() => {
process.stdout.write(`\r[INFO] Thinking ${loadingChars[i++ % loadingChars.length]} `);
}, 80);
} else {
console.log("[DEBUG] Starting to receive streaming response...");
}
for await (const chunk of response) {
// Clear loading animation on first chunk
if (loadingInterval) {
clearInterval(loadingInterval);
process.stdout.write('\r \r');
}
const tNow = now();
chunkCount++;
// Extract content (delta) if present
const content = chunk.choices?.[0]?.delta?.content ?? "";
if (PRINT_CHUNK_DEBUG) {
console.log(`[DEBUG] Received chunk #${chunkCount}:`, JSON.stringify(chunk));
if (content) console.log(`[DEBUG] Chunk content: "${content}"`);
}
if (content) {
process.stdout.write(content);
fullResponse += content;
}
if (tFirstChunk === null) tFirstChunk = tNow;
const dtSincePrev = tPrevChunk === null ? 0 : tNow - tPrevChunk;
chunkStats.push({
index: chunkCount,
tSinceRequestStartMs: tNow - tBeforeRequest,
dtSincePrevMs: dtSincePrev,
contentChars: content.length,
});
tPrevChunk = tNow;
}
// =========
// Summary
// =========
const tStreamEnd = now();
const totalChars = fullResponse.length;
console.log("\n---");
console.log(`[DEBUG] Stream completed after ${chunkCount} chunks`);
console.log(`[INFO] Response completed. Total length: ${totalChars} characters`);
// Build timing metrics
const ttfbMs = (tFirstChunk ?? tStreamEnd) - tAfterCreate; // time from create() resolved → first chunk
const createOverheadMs = tAfterCreate - tBeforeRequest; // time spent awaiting create() promise
const totalSinceRequestMs = tStreamEnd - tBeforeRequest; // from just before create() to last chunk
const streamDurationMs =
tFirstChunk === null ? 0 : tStreamEnd - tFirstChunk;
const gaps = chunkStats
.map((c) => c.dtSincePrevMs)
// ignore the first "gap" which is 0 by construction
.slice(1);
const avgGapMs = gaps.length ? gaps.reduce((a, b) => a + b, 0) / gaps.length : 0;
const medGapMs = median(gaps);
const p95GapMs = quantile(gaps, 0.95);
let maxGapMs = 0;
let maxGapAtChunk = 0;
for (let i = 0; i < gaps.length; i++) {
if (gaps[i] > maxGapMs) {
maxGapMs = gaps[i];
maxGapAtChunk = i + 2; // +1 to move from 0-based, +1 because we sliced starting at second chunk
}
}
// Pretty print summary
console.log("\n=== Timing Summary ===");
console.log(`create() await time: ${ms(createOverheadMs)}`);
console.log(`TTFB (to 1st chunk): ${ms(ttfbMs)}`);
console.log(`Stream duration: ${ms(streamDurationMs)}`);
console.log(`End-to-end (req→last): ${ms(totalSinceRequestMs)}`);
console.log(`Chunks: ${chunkCount}`);
console.log(`Total content chars: ${totalChars}`);
console.log(`Avg chars/chunk: ${(chunkCount ? totalChars / chunkCount : 0).toFixed(1)}`);
console.log(`Inter-chunk gap (avg): ${ms(avgGapMs)}`);
console.log(`Inter-chunk gap (median): ${ms(medGapMs)}`);
console.log(`Inter-chunk gap (p95): ${ms(p95GapMs)}`);
if (gaps.length > 0) {
console.log(`Largest gap: ${ms(maxGapMs)} (before chunk #${maxGapAtChunk})`);
}
// Small tables: first N and slowest N gaps
const firstRows = chunkStats.slice(0, SHOW_FIRST_N).map((c) => ({
chunk: c.index,
"t since request": `${c.tSinceRequestStartMs.toFixed(1)} ms`,
"dt since prev": `${c.dtSincePrevMs.toFixed(1)} ms`,
"chars": c.contentChars,
}));
const slowestRows = chunkStats
.slice(1) // skip first (no meaningful gap)
.sort((a, b) => b.dtSincePrevMs - a.dtSincePrevMs)
.slice(0, SHOW_SLOWEST_N)
.map((c) => ({
chunk: c.index,
"t since request": `${c.tSinceRequestStartMs.toFixed(1)} ms`,
"dt since prev": `${c.dtSincePrevMs.toFixed(1)} ms`,
"chars": c.contentChars,
}));
if (firstRows.length > 0) {
console.log("\n--- First chunk timings ---");
// @ts-ignore Bun/Node support console.table
console.table(firstRows);
}
if (slowestRows.length > 0) {
console.log(`\n--- Slowest ${SHOW_SLOWEST_N} gaps ---`);
// @ts-ignore
console.table(slowestRows);
}
const tProgramEnd = now();
console.log("\n=== Program Overhead ===");
console.log(`Total program runtime: ${ms(tProgramEnd - tProgramStart)}`);
} catch (error: any) {
console.error("\n[ERROR] Request failed:", error.message);
process.exit(1);
}
}
// Run the main function
main().catch((error) => {
console.error("[FATAL ERROR]:", error);
process.exit(1);
});