ai generated README.md

This commit is contained in:
geoffsee
2025-08-28 16:04:38 -04:00
parent f7001fc72b
commit 62dcc8f5bb

622
README.md
View File

@@ -1,114 +1,204 @@
# predict-otron-9000 # predict-otron-9000
_Warning: Do NOT use this in production unless you are cool like that._ A comprehensive multi-service AI platform built around local LLM inference, embeddings, and web interfaces.
<p align="center"> <p align="center">
Aliens, in a native executable. Powerful local AI inference with OpenAI-compatible APIs
</p> </p>
## Project Overview
The predict-otron-9000 is a flexible AI platform that provides:
- **Local LLM Inference**: Run Gemma models locally with CPU or GPU acceleration
- **Embeddings Generation**: Create text embeddings with FastEmbed
- **Web Interface**: Interact with models through a Leptos WASM chat interface
- **TypeScript CLI**: Command-line client for testing and automation
- **Production Deployment**: Docker and Kubernetes deployment options
The system supports both CPU and GPU acceleration (CUDA/Metal), with intelligent fallbacks and platform-specific optimizations.
## Features ## Features
- **OpenAI Compatible**: API endpoints match OpenAI's format for easy integration - **OpenAI Compatible**: API endpoints match OpenAI's format for easy integration
- **Text Embeddings**: Generate high-quality text embeddings using the Nomic Embed Text v1.5 model - **Text Embeddings**: Generate high-quality text embeddings using FastEmbed
- **Text Generation**: Chat completions with OpenAI-compatible API using Gemma models (1B, 2B, 7B, 9B variants including base and instruction-tuned models) - **Text Generation**: Chat completions with OpenAI-compatible API using Gemma models (1B, 2B, 7B variants including instruction-tuned models)
- **Performance Optimized**: Implements efficient caching and singleton patterns for improved throughput and reduced latency - **Performance Optimized**: Efficient caching and platform-specific optimizations for improved throughput
- **Performance Benchmarking**: Includes tools for measuring performance and generating HTML reports - **Web Chat Interface**: Leptos-based WebAssembly (WASM) chat interface for browser-based interaction
- **Web Chat Interface**: A Leptos-based WebAssembly (WASM) chat interface for browser-based interaction with the inference engine - **Flexible Deployment**: Run as monolithic service or microservices architecture
## Architecture ## Architecture Overview
### Core Components ### Workspace Structure
- **`predict-otron-9000`**: Main unified server that combines both engines The project uses a 4-crate Rust workspace plus TypeScript components:
- **`embeddings-engine`**: Handles text embeddings using FastEmbed with the Nomic Embed Text v1.5 model
- **`inference-engine`**: Provides text generation capabilities using Gemma models (1B, 2B, 7B, 9B variants) via Candle transformers
- **`leptos-app`**: WebAssembly-based chat interface built with Leptos framework for browser-based interaction with the inference engine
## Further Reading ```
crates/
### Documentation ├── predict-otron-9000/ # Main orchestration server (Rust 2024)
├── inference-engine/ # Gemma inference via Candle (Rust 2021)
- [Architecture](docs/ARCHITECTURE.md) - Detailed server configuration options and deployment modes ├── embeddings-engine/ # FastEmbed embeddings service (Rust 2024)
- [Server Configuration Guide](docs/SERVER_CONFIG.md) - Detailed server configuration options and deployment modes └── leptos-app/ # WASM web frontend (Rust 2021)
- [Testing Documentation](docs/TESTING.md) - Comprehensive testing guide including unit, integration and e2e tests cli.ts # TypeScript/Bun CLI client
- [Performance Benchmarking](docs/BENCHMARKING.md) - Instructions for running and analyzing performance benchmarks
## Installation
### Prerequisites
- Rust 1.70+ with 2024 edition support
- Cargo package manager
### Build from Source
```shell
# 1. Clone the repository
git clone <repository-url>
cd predict-otron-9000
# 2. Build the project
cargo build --release
# 3. Run the unified server
./run_server.sh
# Alternative: Build and run individual components
# For inference engine only:
cargo run -p inference-engine --release -- --server --port 3777
# For embeddings engine only:
cargo run -p embeddings-engine --release
``` ```
## Usage ### Service Architecture
### Starting the Server - **Main Server** (port 8080): Orchestrates inference and embeddings services
- **Embeddings Service** (port 8080): Standalone FastEmbed service with OpenAI API compatibility
- **Web Frontend** (port 8788): Leptos WASM chat interface served by Trunk
- **CLI Client**: TypeScript/Bun client for testing and automation
The server can be started using the provided script or directly with cargo: ### Deployment Modes
```shell The architecture supports multiple deployment patterns:
# Using the provided script
./run_server.sh
# Or directly with cargo 1. **Development Mode**: All services run in a single process for simplified development
cargo run --bin predict-otron-9000 2. **Docker Monolithic**: Single containerized service handling all functionality
3. **Kubernetes Microservices**: Separate services for horizontal scalability and fault isolation
## Build and Configuration
### Dependencies and Environment Prerequisites
#### Rust Toolchain
- **Editions**: Mixed - main services use Rust 2024, some components use 2021
- **Recommended**: Latest stable Rust toolchain: `rustup default stable && rustup update`
- **Developer tools**:
- `rustup component add rustfmt` (formatting)
- `rustup component add clippy` (linting)
#### Node.js/Bun Toolchain
- **Bun**: Required for TypeScript CLI client: `curl -fsSL https://bun.sh/install | bash`
- **Node.js**: Alternative to Bun, supports OpenAI SDK v5.16.0+
#### WASM Frontend Toolchain
- **Trunk**: Required for Leptos frontend builds: `cargo install trunk`
- **wasm-pack**: `cargo install wasm-pack`
- **WASM target**: `rustup target add wasm32-unknown-unknown`
#### ML Framework Dependencies
- **Candle**: Version 0.9.1 with conditional compilation:
- macOS: Metal support with CPU fallback for stability
- Linux: CUDA support with CPU fallback
- CPU-only: Supported on all platforms
- **FastEmbed**: Version 4.x for embeddings functionality
#### Hugging Face Access
- **Required for**: Gemma model downloads (gated models)
- **Authentication**:
- CLI: `pip install -U "huggingface_hub[cli]" && huggingface-cli login`
- Environment: `export HF_TOKEN="<your_token>"`
- **Cache management**: `export HF_HOME="$PWD/.hf-cache"` (optional, keeps cache local)
- **Model access**: Accept Gemma model licenses on Hugging Face before use
#### Platform-Specific Notes
- **macOS**: Metal acceleration available but routed to CPU for Gemma v3 stability
- **Linux**: CUDA support with BF16 precision on GPU, F32 on CPU
- **Conditional compilation**: Handled automatically per platform in Cargo.toml
### Build Procedures
#### Full Workspace Build
```bash
cargo build --workspace --release
``` ```
### Configuration #### Individual Services
Environment variables for server configuration: **Main Server:**
```bash
- `SERVER_HOST`: Server bind address (default: `0.0.0.0`) cargo build --bin predict-otron-9000 --release
- `SERVER_PORT`: Server port (default: `8080`)
- `SERVER_CONFIG`: JSON configuration for deployment mode (default: Local mode)
- `RUST_LOG`: Logging level configuration
#### Deployment Modes
The server supports two deployment modes controlled by `SERVER_CONFIG`:
**Local Mode (default)**: Runs inference and embeddings services locally
```shell
./run_server.sh
``` ```
**HighAvailability Mode**: Proxies requests to external services **Inference Engine CLI:**
```shell ```bash
export SERVER_CONFIG='{"serverMode": "HighAvailability"}' cargo build --bin cli --package inference-engine --release
./run_server.sh
``` ```
See [docs/SERVER_CONFIG.md](docs/SERVER_CONFIG.md) for complete configuration options, Docker Compose, and Kubernetes examples. **Embeddings Service:**
```bash
#### Basic Configuration Example: cargo build --bin embeddings-engine --release
```shell
export SERVER_PORT=3000
export RUST_LOG=debug
./run_server.sh
``` ```
## API Endpoints **Web Frontend:**
```bash
cd crates/leptos-app
trunk build --release
```
### Text Embeddings ### Running Services
#### Main Server (Port 8080)
```bash
./scripts/run_server.sh
```
- Respects `SERVER_PORT` (default: 8080) and `RUST_LOG` (default: info)
- Boots with default model: `gemma-3-1b-it`
- Requires HF authentication for first-time model download
#### Web Frontend (Port 8788)
```bash
cd crates/leptos-app
./run.sh
```
- Serves Leptos WASM frontend on port 8788
- Sets required RUSTFLAGS for WebAssembly getrandom support
- Auto-reloads during development
#### TypeScript CLI Client
```bash
# List available models
bun run cli.ts --list-models
# Chat completion
bun run cli.ts "What is the capital of France?"
# With specific model
bun run cli.ts --model gemma-3-1b-it --prompt "Hello, world!"
# Show help
bun run cli.ts --help
```
## API Usage
### Health Checks and Model Inventory
```bash
curl -s http://localhost:8080/v1/models | jq
```
### Chat Completions
**Non-streaming:**
```bash
curl -s http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default",
"messages": [{"role": "user", "content": "Say hello"}],
"max_tokens": 64
}' | jq
```
**Streaming (Server-Sent Events):**
```bash
curl -N http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default",
"messages": [{"role": "user", "content": "Tell a short joke"}],
"stream": true,
"max_tokens": 64
}'
```
**Model Specification:**
- Use `"model": "default"` for configured model
- Or specify exact model ID: `"model": "gemma-3-1b-it"`
- Requests with unknown models will be rejected
### Embeddings API
Generate text embeddings compatible with OpenAI's embeddings API. Generate text embeddings compatible with OpenAI's embeddings API.
@@ -141,142 +231,259 @@ Generate text embeddings compatible with OpenAI's embeddings API.
} }
``` ```
### Chat Completions ### Web Frontend
- Navigate to `http://localhost:8788`
- Real-time chat interface with the inference server
- Supports streaming responses and conversation history
Generate chat completions (simplified implementation). ## Testing
**Endpoint**: `POST /v1/chat/completions` ### Test Categories
**Request Body**: 1. **Offline/fast tests**: No network or model downloads required
```json 2. **Online tests**: Require HF authentication and model downloads
{ 3. **Integration tests**: Multi-service end-to-end testing
"model": "gemma-2b-it",
"messages": [ ### Quick Start: Offline Tests
{
"role": "user", **Prompt formatting tests:**
"content": "Hello, how are you?" ```bash
} cargo test --workspace build_gemma_prompt
]
}
``` ```
**Response**: **Model metadata tests:**
```json ```bash
{ cargo test --workspace which_
"id": "chatcmpl-...",
"object": "chat.completion",
"created": 1699123456,
"model": "gemma-2b-it",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! This is the unified predict-otron-9000 server..."
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 10,
"completion_tokens": 35,
"total_tokens": 45
}
}
``` ```
### Health Check These verify core functionality without requiring HF access.
**Endpoint**: `GET /` ### Full Test Suite (Requires HF)
Returns a simple "Hello, World!" message to verify the server is running. **Prerequisites:**
1. Accept Gemma model licenses on Hugging Face
2. Authenticate: `huggingface-cli login` or `export HF_TOKEN=...`
3. Optional: `export HF_HOME="$PWD/.hf-cache"`
**Run all tests:**
```bash
cargo test --workspace
```
### Integration Testing
**End-to-end test script:**
```bash
./test.sh
```
This script:
- Starts the server in background with proper cleanup
- Waits for server readiness via health checks
- Runs CLI tests for model listing and chat completion
- Includes 60-second timeout and process management
## Development ## Development
### Project Structure ### Code Style and Tooling
``` **Formatting:**
predict-otron-9000/ ```bash
├── Cargo.toml # Workspace configuration cargo fmt --all
├── README.md # This file
├── run_server.sh # Server startup script
└── crates/
├── predict-otron-9000/ # Main unified server
│ ├── Cargo.toml
│ └── src/
│ └── main.rs
├── embeddings-engine/ # Text embeddings functionality
│ ├── Cargo.toml
│ └── src/
│ ├── lib.rs
│ └── main.rs
└── inference-engine/ # Text generation functionality
├── Cargo.toml
├── src/
│ ├── lib.rs
│ ├── cli.rs
│ ├── server.rs
│ ├── model.rs
│ ├── text_generation.rs
│ ├── token_output_stream.rs
│ ├── utilities_lib.rs
│ └── openai_types.rs
└── tests/
``` ```
### Running Tests **Linting:**
```bash
```shell cargo clippy --workspace --all-targets -- -D warnings
# Run all tests
cargo test
# Run tests for a specific crate
cargo test -p embeddings-engine
cargo test -p inference-engine
``` ```
For comprehensive testing documentation, including unit tests, integration tests, end-to-end tests, and performance testing, please refer to the [TESTING.md](docs/TESTING.md) document. **Logging:**
- Server uses `tracing` framework
- Control via `RUST_LOG` (e.g., `RUST_LOG=debug ./scripts/run_server.sh`)
For performance benchmarking with HTML report generation, see the [BENCHMARKING.md](BENCHMARKING.md) guide. ### Adding Tests
### Adding Features **For fast, offline tests:**
- Exercise pure logic without tokenizers/models
- Use descriptive names for easy filtering: `cargo test specific_test_name`
- Example patterns: prompt construction, metadata selection, tensor math
1. **Embeddings Engine**: Modify `crates/embeddings-engine/src/lib.rs` to add new embedding models or functionality **Process:**
2. **Inference Engine**: The inference engine has a modular structure - add new models in the `model.rs` module 1. Add test to existing module
3. **Unified Server**: Update `crates/predict-otron-9000/src/main.rs` to integrate new capabilities 2. Run filtered: `cargo test --workspace new_test_name`
3. Verify in full suite: `cargo test --workspace`
## Logging and Debugging ### OpenAI API Compatibility
The application uses structured logging with tracing. Log levels can be controlled via the `RUST_LOG` environment variable: **Features:**
- POST `/v1/chat/completions` with streaming and non-streaming
- Single configured model enforcement (use `"model": "default"`)
- Gemma-style prompt formatting with `<start_of_turn>`/`<end_of_turn>` markers
- System prompt injection into first user turn
- Repetition detection and early stopping in streaming mode
```shell **CORS:**
# Debug level logging - Fully open by default (`tower-http CorsLayer::Any`)
export RUST_LOG=debug - Adjust for production deployment
# Trace level for detailed embeddings debugging ### Architecture Details
export RUST_LOG=trace
# Module-specific logging **Device Selection:**
export RUST_LOG=predict_otron_9000=debug,embeddings_engine=trace - Automatic device/dtype selection
- CPU: Universal fallback (F32 precision)
- CUDA: BF16 precision on compatible GPUs
- Metal: Available but routed to CPU for Gemma v3 stability
**Model Loading:**
- Single-file `model.safetensors` preferred
- Falls back to index resolution via `utilities_lib::hub_load_safetensors`
- HF cache populated on first access
**Multi-Service Design:**
- Main server orchestrates inference and embeddings
- Services can run independently for horizontal scaling
- Docker/Kubernetes metadata included for deployment
## Deployment
### Docker Support
All services include Docker metadata in `Cargo.toml`:
**Main Server:**
- Image: `ghcr.io/geoffsee/predict-otron-9000:latest`
- Port: 8080
**Inference Service:**
- Image: `ghcr.io/geoffsee/inference-service:latest`
- Port: 8080
**Embeddings Service:**
- Image: `ghcr.io/geoffsee/embeddings-service:latest`
- Port: 8080
**Web Frontend:**
- Image: `ghcr.io/geoffsee/leptos-app:latest`
- Port: 8788
**Docker Compose:**
```bash
# Start all services
docker-compose up -d
# Check logs
docker-compose logs -f
# Stop services
docker-compose down
``` ```
### Usage ### Kubernetes Support
The chat interface connects to the inference engine API and provides a user-friendly way to interact with the AI models. To use: All services include Kubernetes manifest metadata:
- Single replica deployments by default
- Service-specific port configurations
- Ready for horizontal pod autoscaling
1. Start the predict-otron-9000 server For Kubernetes deployment details, see the [ARCHITECTURE.md](docs/ARCHITECTURE.md) document.
2. Open the chat interface in a web browser
3. Enter messages and receive AI-generated responses
The interface supports: ### Build Artifacts
- Real-time messaging with the AI
- Visual indication of when the AI is generating a response
- Message history display
## Limitations **Ignored by Git:**
- `target/` (Rust build artifacts)
- `node_modules/` (Node.js dependencies)
- `dist/` (Frontend build output)
- `.fastembed_cache/` (FastEmbed model cache)
- `.hf-cache/` (Hugging Face cache, if configured)
- **Inference Engine**: Currently provides a simplified implementation for chat completions. Full model loading and text generation capabilities from the inference-engine crate are not yet integrated into the unified server. ## Common Issues and Solutions
- **Model Support**: Embeddings are limited to the Nomic Embed Text v1.5 model.
### Authentication/Licensing
**Symptom:** 404 or permission errors fetching models
**Solution:**
1. Accept Gemma model licenses on Hugging Face
2. Authenticate with `huggingface-cli login` or `HF_TOKEN`
3. Verify token with `huggingface-cli whoami`
### GPU Issues
**Symptom:** OOM errors or GPU panics
**Solution:**
1. Test on CPU first: ensure `CUDA_VISIBLE_DEVICES=""` if needed
2. Check available VRAM vs model requirements
3. Consider using smaller model variants
### Model Mismatch Errors
**Symptom:** 400 errors with `type=model_mismatch`
**Solution:**
- Use `"model": "default"` in API requests
- Or match configured model ID exactly: `"model": "gemma-3-1b-it"`
### Frontend Build Issues
**Symptom:** WASM compilation failures
**Solution:**
1. Install required targets: `rustup target add wasm32-unknown-unknown`
2. Install trunk: `cargo install trunk`
3. Check RUSTFLAGS in leptos-app/run.sh
### Network/Timeout Issues
**Symptom:** First-time model downloads timing out
**Solution:**
1. Ensure stable internet connection
2. Consider using local HF cache: `export HF_HOME="$PWD/.hf-cache"`
3. Download models manually with `huggingface-cli`
## Minimal End-to-End Verification
**Build verification:**
```bash
cargo build --workspace --release
```
**Fast offline tests:**
```bash
cargo test --workspace build_gemma_prompt
cargo test --workspace which_
```
**Service startup:**
```bash
./scripts/run_server.sh &
sleep 10 # Wait for server startup
curl -s http://localhost:8080/v1/models | jq
```
**CLI client test:**
```bash
bun run cli.ts "What is 2+2?"
```
**Web frontend:**
```bash
cd crates/leptos-app && ./run.sh &
# Navigate to http://localhost:8788
```
**Integration test:**
```bash
./test.sh
```
**Cleanup:**
```bash
pkill -f "predict-otron-9000"
pkill -f "trunk"
```
For networked tests and full functionality, ensure Hugging Face authentication is configured as described above.
## Further Reading
### Documentation
- [Architecture](docs/ARCHITECTURE.md) - Detailed architectural diagrams and deployment patterns
- [Server Configuration Guide](docs/SERVER_CONFIG.md) - Detailed server configuration options
- [Testing Documentation](docs/TESTING.md) - Comprehensive testing guide
- [Performance Benchmarking](docs/BENCHMARKING.md) - Instructions for benchmarking
## Contributing ## Contributing
@@ -286,45 +493,4 @@ The interface supports:
4. Ensure all tests pass: `cargo test` 4. Ensure all tests pass: `cargo test`
5. Submit a pull request 5. Submit a pull request
_Warning: Do NOT use this in production unless you are cool like that._
## Quick cURL verification for Chat Endpoints
Start the unified server:
```
./run_server.sh
```
Non-streaming chat completion (expects JSON response):
```
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "gemma-3-1b-it",
"messages": [
{"role": "user", "content": "Who was the 16th president of the United States?"}
],
"max_tokens": 128,
"stream": false
}'
```
Streaming chat completion via Server-Sent Events (SSE):
```
curl -N -X POST http://localhost:8080/v1/chat/completions/stream \
-H "Content-Type: application/json" \
-d '{
"model": "gemma-3-1b-it",
"messages": [
{"role": "user", "content": "Who was the 16th president of the United States?"}
],
"max_tokens": 128,
"stream": true
}'
```
Helper scripts are also available:
- scripts/curl_chat.sh
- scripts/curl_chat_stream.sh