mirror of
https://github.com/geoffsee/predict-otron-9001.git
synced 2025-09-08 22:46:44 +00:00
run cargo fmt
This commit is contained in:
@@ -1,5 +1,10 @@
|
||||
use async_openai::types::{CreateEmbeddingRequest, EmbeddingInput};
|
||||
use axum::{Json, Router, response::Json as ResponseJson, routing::{get, post}, http::StatusCode};
|
||||
use axum::{
|
||||
Json, Router,
|
||||
http::StatusCode,
|
||||
response::Json as ResponseJson,
|
||||
routing::{get, post},
|
||||
};
|
||||
use fastembed::{EmbeddingModel, InitOptions, TextEmbedding};
|
||||
use once_cell::sync::Lazy;
|
||||
use serde::Serialize;
|
||||
@@ -9,9 +14,8 @@ use tower_http::trace::TraceLayer;
|
||||
use tracing;
|
||||
|
||||
// Cache for multiple embedding models
|
||||
static MODEL_CACHE: Lazy<RwLock<HashMap<EmbeddingModel, Arc<TextEmbedding>>>> = Lazy::new(|| {
|
||||
RwLock::new(HashMap::new())
|
||||
});
|
||||
static MODEL_CACHE: Lazy<RwLock<HashMap<EmbeddingModel, Arc<TextEmbedding>>>> =
|
||||
Lazy::new(|| RwLock::new(HashMap::new()));
|
||||
|
||||
#[derive(Serialize)]
|
||||
pub struct ModelInfo {
|
||||
@@ -32,11 +36,19 @@ pub struct ModelsResponse {
|
||||
fn parse_embedding_model(model_name: &str) -> Result<EmbeddingModel, String> {
|
||||
match model_name {
|
||||
// Sentence Transformers models
|
||||
"sentence-transformers/all-MiniLM-L6-v2" | "all-minilm-l6-v2" => Ok(EmbeddingModel::AllMiniLML6V2),
|
||||
"sentence-transformers/all-MiniLM-L6-v2-q" | "all-minilm-l6-v2-q" => Ok(EmbeddingModel::AllMiniLML6V2Q),
|
||||
"sentence-transformers/all-MiniLM-L12-v2" | "all-minilm-l12-v2" => Ok(EmbeddingModel::AllMiniLML12V2),
|
||||
"sentence-transformers/all-MiniLM-L12-v2-q" | "all-minilm-l12-v2-q" => Ok(EmbeddingModel::AllMiniLML12V2Q),
|
||||
|
||||
"sentence-transformers/all-MiniLM-L6-v2" | "all-minilm-l6-v2" => {
|
||||
Ok(EmbeddingModel::AllMiniLML6V2)
|
||||
}
|
||||
"sentence-transformers/all-MiniLM-L6-v2-q" | "all-minilm-l6-v2-q" => {
|
||||
Ok(EmbeddingModel::AllMiniLML6V2Q)
|
||||
}
|
||||
"sentence-transformers/all-MiniLM-L12-v2" | "all-minilm-l12-v2" => {
|
||||
Ok(EmbeddingModel::AllMiniLML12V2)
|
||||
}
|
||||
"sentence-transformers/all-MiniLM-L12-v2-q" | "all-minilm-l12-v2-q" => {
|
||||
Ok(EmbeddingModel::AllMiniLML12V2Q)
|
||||
}
|
||||
|
||||
// BGE models
|
||||
"BAAI/bge-base-en-v1.5" | "bge-base-en-v1.5" => Ok(EmbeddingModel::BGEBaseENV15),
|
||||
"BAAI/bge-base-en-v1.5-q" | "bge-base-en-v1.5-q" => Ok(EmbeddingModel::BGEBaseENV15Q),
|
||||
@@ -46,41 +58,68 @@ fn parse_embedding_model(model_name: &str) -> Result<EmbeddingModel, String> {
|
||||
"BAAI/bge-small-en-v1.5-q" | "bge-small-en-v1.5-q" => Ok(EmbeddingModel::BGESmallENV15Q),
|
||||
"BAAI/bge-small-zh-v1.5" | "bge-small-zh-v1.5" => Ok(EmbeddingModel::BGESmallZHV15),
|
||||
"BAAI/bge-large-zh-v1.5" | "bge-large-zh-v1.5" => Ok(EmbeddingModel::BGELargeZHV15),
|
||||
|
||||
|
||||
// Nomic models
|
||||
"nomic-ai/nomic-embed-text-v1" | "nomic-embed-text-v1" => Ok(EmbeddingModel::NomicEmbedTextV1),
|
||||
"nomic-ai/nomic-embed-text-v1.5" | "nomic-embed-text-v1.5" | "nomic-text-embed" => Ok(EmbeddingModel::NomicEmbedTextV15),
|
||||
"nomic-ai/nomic-embed-text-v1.5-q" | "nomic-embed-text-v1.5-q" => Ok(EmbeddingModel::NomicEmbedTextV15Q),
|
||||
|
||||
"nomic-ai/nomic-embed-text-v1" | "nomic-embed-text-v1" => {
|
||||
Ok(EmbeddingModel::NomicEmbedTextV1)
|
||||
}
|
||||
"nomic-ai/nomic-embed-text-v1.5" | "nomic-embed-text-v1.5" | "nomic-text-embed" => {
|
||||
Ok(EmbeddingModel::NomicEmbedTextV15)
|
||||
}
|
||||
"nomic-ai/nomic-embed-text-v1.5-q" | "nomic-embed-text-v1.5-q" => {
|
||||
Ok(EmbeddingModel::NomicEmbedTextV15Q)
|
||||
}
|
||||
|
||||
// Paraphrase models
|
||||
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | "paraphrase-multilingual-minilm-l12-v2" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2),
|
||||
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-q" | "paraphrase-multilingual-minilm-l12-v2-q" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2Q),
|
||||
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | "paraphrase-multilingual-mpnet-base-v2" => Ok(EmbeddingModel::ParaphraseMLMpnetBaseV2),
|
||||
|
||||
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
||||
| "paraphrase-multilingual-minilm-l12-v2" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2),
|
||||
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-q"
|
||||
| "paraphrase-multilingual-minilm-l12-v2-q" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2Q),
|
||||
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
||||
| "paraphrase-multilingual-mpnet-base-v2" => Ok(EmbeddingModel::ParaphraseMLMpnetBaseV2),
|
||||
|
||||
// ModernBert
|
||||
"lightonai/modernbert-embed-large" | "modernbert-embed-large" => Ok(EmbeddingModel::ModernBertEmbedLarge),
|
||||
|
||||
"lightonai/modernbert-embed-large" | "modernbert-embed-large" => {
|
||||
Ok(EmbeddingModel::ModernBertEmbedLarge)
|
||||
}
|
||||
|
||||
// Multilingual E5 models
|
||||
"intfloat/multilingual-e5-small" | "multilingual-e5-small" => Ok(EmbeddingModel::MultilingualE5Small),
|
||||
"intfloat/multilingual-e5-base" | "multilingual-e5-base" => Ok(EmbeddingModel::MultilingualE5Base),
|
||||
"intfloat/multilingual-e5-large" | "multilingual-e5-large" => Ok(EmbeddingModel::MultilingualE5Large),
|
||||
|
||||
"intfloat/multilingual-e5-small" | "multilingual-e5-small" => {
|
||||
Ok(EmbeddingModel::MultilingualE5Small)
|
||||
}
|
||||
"intfloat/multilingual-e5-base" | "multilingual-e5-base" => {
|
||||
Ok(EmbeddingModel::MultilingualE5Base)
|
||||
}
|
||||
"intfloat/multilingual-e5-large" | "multilingual-e5-large" => {
|
||||
Ok(EmbeddingModel::MultilingualE5Large)
|
||||
}
|
||||
|
||||
// Mixedbread models
|
||||
"mixedbread-ai/mxbai-embed-large-v1" | "mxbai-embed-large-v1" => Ok(EmbeddingModel::MxbaiEmbedLargeV1),
|
||||
"mixedbread-ai/mxbai-embed-large-v1-q" | "mxbai-embed-large-v1-q" => Ok(EmbeddingModel::MxbaiEmbedLargeV1Q),
|
||||
|
||||
"mixedbread-ai/mxbai-embed-large-v1" | "mxbai-embed-large-v1" => {
|
||||
Ok(EmbeddingModel::MxbaiEmbedLargeV1)
|
||||
}
|
||||
"mixedbread-ai/mxbai-embed-large-v1-q" | "mxbai-embed-large-v1-q" => {
|
||||
Ok(EmbeddingModel::MxbaiEmbedLargeV1Q)
|
||||
}
|
||||
|
||||
// GTE models
|
||||
"Alibaba-NLP/gte-base-en-v1.5" | "gte-base-en-v1.5" => Ok(EmbeddingModel::GTEBaseENV15),
|
||||
"Alibaba-NLP/gte-base-en-v1.5-q" | "gte-base-en-v1.5-q" => Ok(EmbeddingModel::GTEBaseENV15Q),
|
||||
"Alibaba-NLP/gte-base-en-v1.5-q" | "gte-base-en-v1.5-q" => {
|
||||
Ok(EmbeddingModel::GTEBaseENV15Q)
|
||||
}
|
||||
"Alibaba-NLP/gte-large-en-v1.5" | "gte-large-en-v1.5" => Ok(EmbeddingModel::GTELargeENV15),
|
||||
"Alibaba-NLP/gte-large-en-v1.5-q" | "gte-large-en-v1.5-q" => Ok(EmbeddingModel::GTELargeENV15Q),
|
||||
|
||||
"Alibaba-NLP/gte-large-en-v1.5-q" | "gte-large-en-v1.5-q" => {
|
||||
Ok(EmbeddingModel::GTELargeENV15Q)
|
||||
}
|
||||
|
||||
// CLIP model
|
||||
"Qdrant/clip-ViT-B-32-text" | "clip-vit-b-32" => Ok(EmbeddingModel::ClipVitB32),
|
||||
|
||||
|
||||
// Jina model
|
||||
"jinaai/jina-embeddings-v2-base-code" | "jina-embeddings-v2-base-code" => Ok(EmbeddingModel::JinaEmbeddingsV2BaseCode),
|
||||
|
||||
"jinaai/jina-embeddings-v2-base-code" | "jina-embeddings-v2-base-code" => {
|
||||
Ok(EmbeddingModel::JinaEmbeddingsV2BaseCode)
|
||||
}
|
||||
|
||||
_ => Err(format!("Unsupported embedding model: {}", model_name)),
|
||||
}
|
||||
}
|
||||
@@ -95,7 +134,9 @@ fn get_model_dimensions(model: &EmbeddingModel) -> usize {
|
||||
EmbeddingModel::BGESmallENV15 | EmbeddingModel::BGESmallENV15Q => 384,
|
||||
EmbeddingModel::BGESmallZHV15 => 512,
|
||||
EmbeddingModel::BGELargeZHV15 => 1024,
|
||||
EmbeddingModel::NomicEmbedTextV1 | EmbeddingModel::NomicEmbedTextV15 | EmbeddingModel::NomicEmbedTextV15Q => 768,
|
||||
EmbeddingModel::NomicEmbedTextV1
|
||||
| EmbeddingModel::NomicEmbedTextV15
|
||||
| EmbeddingModel::NomicEmbedTextV15Q => 768,
|
||||
EmbeddingModel::ParaphraseMLMiniLML12V2 | EmbeddingModel::ParaphraseMLMiniLML12V2Q => 384,
|
||||
EmbeddingModel::ParaphraseMLMpnetBaseV2 => 768,
|
||||
EmbeddingModel::ModernBertEmbedLarge => 1024,
|
||||
@@ -114,37 +155,41 @@ fn get_model_dimensions(model: &EmbeddingModel) -> usize {
|
||||
fn get_or_create_model(embedding_model: EmbeddingModel) -> Result<Arc<TextEmbedding>, String> {
|
||||
// First try to get from cache (read lock)
|
||||
{
|
||||
let cache = MODEL_CACHE.read().map_err(|e| format!("Failed to acquire read lock: {}", e))?;
|
||||
let cache = MODEL_CACHE
|
||||
.read()
|
||||
.map_err(|e| format!("Failed to acquire read lock: {}", e))?;
|
||||
if let Some(model) = cache.get(&embedding_model) {
|
||||
tracing::debug!("Using cached model: {:?}", embedding_model);
|
||||
return Ok(Arc::clone(model));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Model not in cache, create it (write lock)
|
||||
let mut cache = MODEL_CACHE.write().map_err(|e| format!("Failed to acquire write lock: {}", e))?;
|
||||
|
||||
let mut cache = MODEL_CACHE
|
||||
.write()
|
||||
.map_err(|e| format!("Failed to acquire write lock: {}", e))?;
|
||||
|
||||
// Double-check after acquiring write lock
|
||||
if let Some(model) = cache.get(&embedding_model) {
|
||||
tracing::debug!("Using cached model (double-check): {:?}", embedding_model);
|
||||
return Ok(Arc::clone(model));
|
||||
}
|
||||
|
||||
|
||||
tracing::info!("Initializing new embedding model: {:?}", embedding_model);
|
||||
let model_start_time = std::time::Instant::now();
|
||||
|
||||
|
||||
let model = TextEmbedding::try_new(
|
||||
InitOptions::new(embedding_model.clone()).with_show_download_progress(true),
|
||||
)
|
||||
.map_err(|e| format!("Failed to initialize model {:?}: {}", embedding_model, e))?;
|
||||
|
||||
|
||||
let model_init_time = model_start_time.elapsed();
|
||||
tracing::info!(
|
||||
"Embedding model {:?} initialized in {:.2?}",
|
||||
embedding_model,
|
||||
model_init_time
|
||||
);
|
||||
|
||||
|
||||
let model_arc = Arc::new(model);
|
||||
cache.insert(embedding_model.clone(), Arc::clone(&model_arc));
|
||||
Ok(model_arc)
|
||||
@@ -158,7 +203,7 @@ pub async fn embeddings_create(
|
||||
|
||||
// Phase 1: Parse and get the embedding model
|
||||
let model_start_time = std::time::Instant::now();
|
||||
|
||||
|
||||
let embedding_model = match parse_embedding_model(&payload.model) {
|
||||
Ok(model) => model,
|
||||
Err(e) => {
|
||||
@@ -166,15 +211,18 @@ pub async fn embeddings_create(
|
||||
return Err((StatusCode::BAD_REQUEST, format!("Invalid model: {}", e)));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
let model = match get_or_create_model(embedding_model.clone()) {
|
||||
Ok(model) => model,
|
||||
Err(e) => {
|
||||
tracing::error!("Failed to get/create model: {}", e);
|
||||
return Err((StatusCode::INTERNAL_SERVER_ERROR, format!("Model initialization failed: {}", e)));
|
||||
return Err((
|
||||
StatusCode::INTERNAL_SERVER_ERROR,
|
||||
format!("Model initialization failed: {}", e),
|
||||
));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
let model_access_time = model_start_time.elapsed();
|
||||
tracing::debug!(
|
||||
"Model access/creation completed in {:.2?}",
|
||||
@@ -205,12 +253,13 @@ pub async fn embeddings_create(
|
||||
// Phase 3: Generate embeddings
|
||||
let embedding_start_time = std::time::Instant::now();
|
||||
|
||||
let embeddings = model
|
||||
.embed(texts_from_embedding_input, None)
|
||||
.map_err(|e| {
|
||||
tracing::error!("Failed to generate embeddings: {}", e);
|
||||
(StatusCode::INTERNAL_SERVER_ERROR, format!("Embedding generation failed: {}", e))
|
||||
})?;
|
||||
let embeddings = model.embed(texts_from_embedding_input, None).map_err(|e| {
|
||||
tracing::error!("Failed to generate embeddings: {}", e);
|
||||
(
|
||||
StatusCode::INTERNAL_SERVER_ERROR,
|
||||
format!("Embedding generation failed: {}", e),
|
||||
)
|
||||
})?;
|
||||
|
||||
let embedding_generation_time = embedding_start_time.elapsed();
|
||||
tracing::info!(
|
||||
@@ -287,7 +336,7 @@ pub async fn embeddings_create(
|
||||
// Use the actual model dimensions instead of hardcoded 768
|
||||
let actual_dimensions = padded_embedding.len();
|
||||
let expected_dimensions = get_model_dimensions(&embedding_model);
|
||||
|
||||
|
||||
if actual_dimensions != expected_dimensions {
|
||||
tracing::warn!(
|
||||
"Model {:?} produced {} dimensions but expected {}",
|
||||
@@ -455,7 +504,8 @@ pub async fn models_list() -> ResponseJson<ModelsResponse> {
|
||||
id: "nomic-ai/nomic-embed-text-v1.5-q".to_string(),
|
||||
object: "model".to_string(),
|
||||
owned_by: "nomic-ai".to_string(),
|
||||
description: "Quantized v1.5 release of the 8192 context length english model".to_string(),
|
||||
description: "Quantized v1.5 release of the 8192 context length english model"
|
||||
.to_string(),
|
||||
dimensions: 768,
|
||||
},
|
||||
ModelInfo {
|
||||
@@ -476,7 +526,8 @@ pub async fn models_list() -> ResponseJson<ModelsResponse> {
|
||||
id: "sentence-transformers/paraphrase-multilingual-mpnet-base-v2".to_string(),
|
||||
object: "model".to_string(),
|
||||
owned_by: "sentence-transformers".to_string(),
|
||||
description: "Sentence-transformers model for tasks like clustering or semantic search".to_string(),
|
||||
description: "Sentence-transformers model for tasks like clustering or semantic search"
|
||||
.to_string(),
|
||||
dimensions: 768,
|
||||
},
|
||||
ModelInfo {
|
||||
|
@@ -18,12 +18,10 @@ async fn embeddings_create(
|
||||
) -> Result<ResponseJson<serde_json::Value>, axum::response::Response> {
|
||||
match embeddings_engine::embeddings_create(Json(payload)).await {
|
||||
Ok(response) => Ok(response),
|
||||
Err((status_code, message)) => {
|
||||
Err(axum::response::Response::builder()
|
||||
.status(status_code)
|
||||
.body(axum::body::Body::from(message))
|
||||
.unwrap())
|
||||
}
|
||||
Err((status_code, message)) => Err(axum::response::Response::builder()
|
||||
.status(status_code)
|
||||
.body(axum::body::Body::from(message))
|
||||
.unwrap()),
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user