run cargo fmt

This commit is contained in:
geoffsee
2025-09-04 13:45:25 -04:00
parent 1e02b12cda
commit c1c583faab
11 changed files with 241 additions and 170 deletions

View File

@@ -44,7 +44,7 @@ jobs:
- name: Clippy
shell: bash
run: cargo clippy --all-targets
run: cargo clippy --all
- name: Tests
shell: bash

View File

@@ -257,7 +257,8 @@ pub fn send_chat_completion_stream(
break;
}
let value = js_sys::Reflect::get(&result, &JsValue::from_str("value")).unwrap();
let value =
js_sys::Reflect::get(&result, &JsValue::from_str("value")).unwrap();
let array = js_sys::Uint8Array::new(&value);
let mut bytes = vec![0; array.length() as usize];
array.copy_to(&mut bytes);
@@ -279,7 +280,9 @@ pub fn send_chat_completion_stream(
}
// Parse JSON chunk
if let Ok(chunk) = serde_json::from_str::<StreamChatResponse>(data) {
if let Ok(chunk) =
serde_json::from_str::<StreamChatResponse>(data)
{
if let Some(choice) = chunk.choices.first() {
if let Some(content) = &choice.delta.content {
on_chunk(content.clone());

View File

@@ -1,5 +1,10 @@
use async_openai::types::{CreateEmbeddingRequest, EmbeddingInput};
use axum::{Json, Router, response::Json as ResponseJson, routing::{get, post}, http::StatusCode};
use axum::{
Json, Router,
http::StatusCode,
response::Json as ResponseJson,
routing::{get, post},
};
use fastembed::{EmbeddingModel, InitOptions, TextEmbedding};
use once_cell::sync::Lazy;
use serde::Serialize;
@@ -9,9 +14,8 @@ use tower_http::trace::TraceLayer;
use tracing;
// Cache for multiple embedding models
static MODEL_CACHE: Lazy<RwLock<HashMap<EmbeddingModel, Arc<TextEmbedding>>>> = Lazy::new(|| {
RwLock::new(HashMap::new())
});
static MODEL_CACHE: Lazy<RwLock<HashMap<EmbeddingModel, Arc<TextEmbedding>>>> =
Lazy::new(|| RwLock::new(HashMap::new()));
#[derive(Serialize)]
pub struct ModelInfo {
@@ -32,10 +36,18 @@ pub struct ModelsResponse {
fn parse_embedding_model(model_name: &str) -> Result<EmbeddingModel, String> {
match model_name {
// Sentence Transformers models
"sentence-transformers/all-MiniLM-L6-v2" | "all-minilm-l6-v2" => Ok(EmbeddingModel::AllMiniLML6V2),
"sentence-transformers/all-MiniLM-L6-v2-q" | "all-minilm-l6-v2-q" => Ok(EmbeddingModel::AllMiniLML6V2Q),
"sentence-transformers/all-MiniLM-L12-v2" | "all-minilm-l12-v2" => Ok(EmbeddingModel::AllMiniLML12V2),
"sentence-transformers/all-MiniLM-L12-v2-q" | "all-minilm-l12-v2-q" => Ok(EmbeddingModel::AllMiniLML12V2Q),
"sentence-transformers/all-MiniLM-L6-v2" | "all-minilm-l6-v2" => {
Ok(EmbeddingModel::AllMiniLML6V2)
}
"sentence-transformers/all-MiniLM-L6-v2-q" | "all-minilm-l6-v2-q" => {
Ok(EmbeddingModel::AllMiniLML6V2Q)
}
"sentence-transformers/all-MiniLM-L12-v2" | "all-minilm-l12-v2" => {
Ok(EmbeddingModel::AllMiniLML12V2)
}
"sentence-transformers/all-MiniLM-L12-v2-q" | "all-minilm-l12-v2-q" => {
Ok(EmbeddingModel::AllMiniLML12V2Q)
}
// BGE models
"BAAI/bge-base-en-v1.5" | "bge-base-en-v1.5" => Ok(EmbeddingModel::BGEBaseENV15),
@@ -48,38 +60,65 @@ fn parse_embedding_model(model_name: &str) -> Result<EmbeddingModel, String> {
"BAAI/bge-large-zh-v1.5" | "bge-large-zh-v1.5" => Ok(EmbeddingModel::BGELargeZHV15),
// Nomic models
"nomic-ai/nomic-embed-text-v1" | "nomic-embed-text-v1" => Ok(EmbeddingModel::NomicEmbedTextV1),
"nomic-ai/nomic-embed-text-v1.5" | "nomic-embed-text-v1.5" | "nomic-text-embed" => Ok(EmbeddingModel::NomicEmbedTextV15),
"nomic-ai/nomic-embed-text-v1.5-q" | "nomic-embed-text-v1.5-q" => Ok(EmbeddingModel::NomicEmbedTextV15Q),
"nomic-ai/nomic-embed-text-v1" | "nomic-embed-text-v1" => {
Ok(EmbeddingModel::NomicEmbedTextV1)
}
"nomic-ai/nomic-embed-text-v1.5" | "nomic-embed-text-v1.5" | "nomic-text-embed" => {
Ok(EmbeddingModel::NomicEmbedTextV15)
}
"nomic-ai/nomic-embed-text-v1.5-q" | "nomic-embed-text-v1.5-q" => {
Ok(EmbeddingModel::NomicEmbedTextV15Q)
}
// Paraphrase models
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | "paraphrase-multilingual-minilm-l12-v2" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2),
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-q" | "paraphrase-multilingual-minilm-l12-v2-q" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2Q),
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | "paraphrase-multilingual-mpnet-base-v2" => Ok(EmbeddingModel::ParaphraseMLMpnetBaseV2),
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
| "paraphrase-multilingual-minilm-l12-v2" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2),
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2-q"
| "paraphrase-multilingual-minilm-l12-v2-q" => Ok(EmbeddingModel::ParaphraseMLMiniLML12V2Q),
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
| "paraphrase-multilingual-mpnet-base-v2" => Ok(EmbeddingModel::ParaphraseMLMpnetBaseV2),
// ModernBert
"lightonai/modernbert-embed-large" | "modernbert-embed-large" => Ok(EmbeddingModel::ModernBertEmbedLarge),
"lightonai/modernbert-embed-large" | "modernbert-embed-large" => {
Ok(EmbeddingModel::ModernBertEmbedLarge)
}
// Multilingual E5 models
"intfloat/multilingual-e5-small" | "multilingual-e5-small" => Ok(EmbeddingModel::MultilingualE5Small),
"intfloat/multilingual-e5-base" | "multilingual-e5-base" => Ok(EmbeddingModel::MultilingualE5Base),
"intfloat/multilingual-e5-large" | "multilingual-e5-large" => Ok(EmbeddingModel::MultilingualE5Large),
"intfloat/multilingual-e5-small" | "multilingual-e5-small" => {
Ok(EmbeddingModel::MultilingualE5Small)
}
"intfloat/multilingual-e5-base" | "multilingual-e5-base" => {
Ok(EmbeddingModel::MultilingualE5Base)
}
"intfloat/multilingual-e5-large" | "multilingual-e5-large" => {
Ok(EmbeddingModel::MultilingualE5Large)
}
// Mixedbread models
"mixedbread-ai/mxbai-embed-large-v1" | "mxbai-embed-large-v1" => Ok(EmbeddingModel::MxbaiEmbedLargeV1),
"mixedbread-ai/mxbai-embed-large-v1-q" | "mxbai-embed-large-v1-q" => Ok(EmbeddingModel::MxbaiEmbedLargeV1Q),
"mixedbread-ai/mxbai-embed-large-v1" | "mxbai-embed-large-v1" => {
Ok(EmbeddingModel::MxbaiEmbedLargeV1)
}
"mixedbread-ai/mxbai-embed-large-v1-q" | "mxbai-embed-large-v1-q" => {
Ok(EmbeddingModel::MxbaiEmbedLargeV1Q)
}
// GTE models
"Alibaba-NLP/gte-base-en-v1.5" | "gte-base-en-v1.5" => Ok(EmbeddingModel::GTEBaseENV15),
"Alibaba-NLP/gte-base-en-v1.5-q" | "gte-base-en-v1.5-q" => Ok(EmbeddingModel::GTEBaseENV15Q),
"Alibaba-NLP/gte-base-en-v1.5-q" | "gte-base-en-v1.5-q" => {
Ok(EmbeddingModel::GTEBaseENV15Q)
}
"Alibaba-NLP/gte-large-en-v1.5" | "gte-large-en-v1.5" => Ok(EmbeddingModel::GTELargeENV15),
"Alibaba-NLP/gte-large-en-v1.5-q" | "gte-large-en-v1.5-q" => Ok(EmbeddingModel::GTELargeENV15Q),
"Alibaba-NLP/gte-large-en-v1.5-q" | "gte-large-en-v1.5-q" => {
Ok(EmbeddingModel::GTELargeENV15Q)
}
// CLIP model
"Qdrant/clip-ViT-B-32-text" | "clip-vit-b-32" => Ok(EmbeddingModel::ClipVitB32),
// Jina model
"jinaai/jina-embeddings-v2-base-code" | "jina-embeddings-v2-base-code" => Ok(EmbeddingModel::JinaEmbeddingsV2BaseCode),
"jinaai/jina-embeddings-v2-base-code" | "jina-embeddings-v2-base-code" => {
Ok(EmbeddingModel::JinaEmbeddingsV2BaseCode)
}
_ => Err(format!("Unsupported embedding model: {}", model_name)),
}
@@ -95,7 +134,9 @@ fn get_model_dimensions(model: &EmbeddingModel) -> usize {
EmbeddingModel::BGESmallENV15 | EmbeddingModel::BGESmallENV15Q => 384,
EmbeddingModel::BGESmallZHV15 => 512,
EmbeddingModel::BGELargeZHV15 => 1024,
EmbeddingModel::NomicEmbedTextV1 | EmbeddingModel::NomicEmbedTextV15 | EmbeddingModel::NomicEmbedTextV15Q => 768,
EmbeddingModel::NomicEmbedTextV1
| EmbeddingModel::NomicEmbedTextV15
| EmbeddingModel::NomicEmbedTextV15Q => 768,
EmbeddingModel::ParaphraseMLMiniLML12V2 | EmbeddingModel::ParaphraseMLMiniLML12V2Q => 384,
EmbeddingModel::ParaphraseMLMpnetBaseV2 => 768,
EmbeddingModel::ModernBertEmbedLarge => 1024,
@@ -114,7 +155,9 @@ fn get_model_dimensions(model: &EmbeddingModel) -> usize {
fn get_or_create_model(embedding_model: EmbeddingModel) -> Result<Arc<TextEmbedding>, String> {
// First try to get from cache (read lock)
{
let cache = MODEL_CACHE.read().map_err(|e| format!("Failed to acquire read lock: {}", e))?;
let cache = MODEL_CACHE
.read()
.map_err(|e| format!("Failed to acquire read lock: {}", e))?;
if let Some(model) = cache.get(&embedding_model) {
tracing::debug!("Using cached model: {:?}", embedding_model);
return Ok(Arc::clone(model));
@@ -122,7 +165,9 @@ fn get_or_create_model(embedding_model: EmbeddingModel) -> Result<Arc<TextEmbedd
}
// Model not in cache, create it (write lock)
let mut cache = MODEL_CACHE.write().map_err(|e| format!("Failed to acquire write lock: {}", e))?;
let mut cache = MODEL_CACHE
.write()
.map_err(|e| format!("Failed to acquire write lock: {}", e))?;
// Double-check after acquiring write lock
if let Some(model) = cache.get(&embedding_model) {
@@ -171,7 +216,10 @@ pub async fn embeddings_create(
Ok(model) => model,
Err(e) => {
tracing::error!("Failed to get/create model: {}", e);
return Err((StatusCode::INTERNAL_SERVER_ERROR, format!("Model initialization failed: {}", e)));
return Err((
StatusCode::INTERNAL_SERVER_ERROR,
format!("Model initialization failed: {}", e),
));
}
};
@@ -205,11 +253,12 @@ pub async fn embeddings_create(
// Phase 3: Generate embeddings
let embedding_start_time = std::time::Instant::now();
let embeddings = model
.embed(texts_from_embedding_input, None)
.map_err(|e| {
let embeddings = model.embed(texts_from_embedding_input, None).map_err(|e| {
tracing::error!("Failed to generate embeddings: {}", e);
(StatusCode::INTERNAL_SERVER_ERROR, format!("Embedding generation failed: {}", e))
(
StatusCode::INTERNAL_SERVER_ERROR,
format!("Embedding generation failed: {}", e),
)
})?;
let embedding_generation_time = embedding_start_time.elapsed();
@@ -455,7 +504,8 @@ pub async fn models_list() -> ResponseJson<ModelsResponse> {
id: "nomic-ai/nomic-embed-text-v1.5-q".to_string(),
object: "model".to_string(),
owned_by: "nomic-ai".to_string(),
description: "Quantized v1.5 release of the 8192 context length english model".to_string(),
description: "Quantized v1.5 release of the 8192 context length english model"
.to_string(),
dimensions: 768,
},
ModelInfo {
@@ -476,7 +526,8 @@ pub async fn models_list() -> ResponseJson<ModelsResponse> {
id: "sentence-transformers/paraphrase-multilingual-mpnet-base-v2".to_string(),
object: "model".to_string(),
owned_by: "sentence-transformers".to_string(),
description: "Sentence-transformers model for tasks like clustering or semantic search".to_string(),
description: "Sentence-transformers model for tasks like clustering or semantic search"
.to_string(),
dimensions: 768,
},
ModelInfo {

View File

@@ -18,12 +18,10 @@ async fn embeddings_create(
) -> Result<ResponseJson<serde_json::Value>, axum::response::Response> {
match embeddings_engine::embeddings_create(Json(payload)).await {
Ok(response) => Ok(response),
Err((status_code, message)) => {
Err(axum::response::Response::builder()
Err((status_code, message)) => Err(axum::response::Response::builder()
.status(status_code)
.body(axum::body::Body::from(message))
.unwrap())
}
.unwrap()),
}
}

View File

@@ -42,7 +42,11 @@ pub struct ModelMeta {
}
const fn m(id: &'static str, family: Family, instruct: bool) -> ModelMeta {
ModelMeta { id, family, instruct }
ModelMeta {
id,
family,
instruct,
}
}
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]

View File

@@ -42,12 +42,12 @@ pub struct AppState {
pub llama_config: Option<LlamaInferenceConfig>,
}
impl Default for AppState {
fn default() -> Self {
// Configure a default model to prevent 503 errors from the chat-ui
// This can be overridden by environment variables if needed
let default_model_id = std::env::var("DEFAULT_MODEL").unwrap_or_else(|_| "gemma-3-1b-it".to_string());
let default_model_id =
std::env::var("DEFAULT_MODEL").unwrap_or_else(|_| "gemma-3-1b-it".to_string());
let gemma_config = GemmaInferenceConfig {
model: None,
@@ -94,9 +94,6 @@ fn model_id_to_which(model_id: &str) -> Option<Which> {
}
}
fn normalize_model_id(model_id: &str) -> String {
model_id.to_lowercase().replace("_", "-")
}
@@ -204,19 +201,21 @@ pub async fn chat_completions_non_streaming_proxy(
StatusCode::BAD_REQUEST,
Json(serde_json::json!({
"error": { "message": format!("Model {} is not a Llama model", model_id) }
}))
})),
));
}
};
let mut config = LlamaInferenceConfig::new(llama_model);
config.prompt = prompt.clone();
config.max_tokens = max_tokens;
run_llama_inference(config).map_err(|e| (
run_llama_inference(config).map_err(|e| {
(
StatusCode::INTERNAL_SERVER_ERROR,
Json(serde_json::json!({
"error": { "message": format!("Error initializing Llama model: {}", e) }
}))
))?
})),
)
})?
} else {
// Create Gemma configuration dynamically
let gemma_model = match which_model {
@@ -241,7 +240,7 @@ pub async fn chat_completions_non_streaming_proxy(
StatusCode::BAD_REQUEST,
Json(serde_json::json!({
"error": { "message": format!("Model {} is not a Gemma model", model_id) }
}))
})),
));
}
};
@@ -252,12 +251,14 @@ pub async fn chat_completions_non_streaming_proxy(
};
config.prompt = prompt.clone();
config.max_tokens = max_tokens;
run_gemma_api(config).map_err(|e| (
run_gemma_api(config).map_err(|e| {
(
StatusCode::INTERNAL_SERVER_ERROR,
Json(serde_json::json!({
"error": { "message": format!("Error initializing Gemma model: {}", e) }
}))
))?
})),
)
})?
};
// Collect all tokens from the stream
@@ -397,7 +398,7 @@ async fn handle_streaming_request(
StatusCode::INTERNAL_SERVER_ERROR,
Json(serde_json::json!({
"error": { "message": format!("Model {} is not a Llama model", model_id) }
}))
})),
));
}
};
@@ -439,7 +440,7 @@ async fn handle_streaming_request(
StatusCode::INTERNAL_SERVER_ERROR,
Json(serde_json::json!({
"error": { "message": format!("Model {} is not a Gemma model", model_id) }
}))
})),
));
}
};
@@ -605,9 +606,9 @@ pub async fn list_models() -> Json<ModelListResponse> {
Which::Llama32_3BInstruct,
];
let mut models: Vec<Model> = which_variants.into_iter().map(|which| {
let mut models: Vec<Model> = which_variants
.into_iter()
.map(|which| {
let meta = which.meta();
let model_id = match which {
Which::Base2B => "gemma-2b",
@@ -646,18 +647,25 @@ pub async fn list_models() -> Json<ModelListResponse> {
created: 1686935002,
owned_by: owned_by.to_string(),
}
}).collect();
})
.collect();
// Get embeddings models and convert them to inference Model format
let embeddings_response = models_list().await;
let embeddings_models: Vec<Model> = embeddings_response.0.data.into_iter().map(|embedding_model| {
Model {
let embeddings_models: Vec<Model> = embeddings_response
.0
.data
.into_iter()
.map(|embedding_model| Model {
id: embedding_model.id,
object: embedding_model.object,
created: 1686935002,
owned_by: format!("{} - {}", embedding_model.owned_by, embedding_model.description),
}
}).collect();
owned_by: format!(
"{} - {}",
embedding_model.owned_by, embedding_model.description
),
})
.collect();
// Add embeddings models to the main models list
models.extend(embeddings_models);

View File

@@ -1,4 +1,3 @@
use anyhow::{Error as E, Result};
use candle_transformers::models::gemma::{Config as Config1, Model as Model1};
use candle_transformers::models::gemma2::{Config as Config2, Model as Model2};
@@ -11,13 +10,13 @@ use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use std::io::Write;
use std::fmt;
use std::str::FromStr;
use std::sync::mpsc::{self, Receiver, Sender};
use std::thread;
use tokenizers::Tokenizer;
use utils::hub_load_safetensors;
use utils::token_output_stream::TokenOutputStream;
use std::str::FromStr;
use std::fmt;
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
pub enum WhichModel {
@@ -367,7 +366,9 @@ pub fn run_gemma_api(cfg: GemmaInferenceConfig) -> Result<Receiver<Result<String
let tokenizer_filename = repo.get("tokenizer.json")?;
let config_filename = repo.get("config.json")?;
let filenames = match cfg.model {
Some(WhichModel::BaseV3_1B) | Some(WhichModel::InstructV3_1B) => vec![repo.get("model.safetensors")?],
Some(WhichModel::BaseV3_1B) | Some(WhichModel::InstructV3_1B) => {
vec![repo.get("model.safetensors")?]
}
_ => hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("Retrieved files in {:?}", start.elapsed());
@@ -396,7 +397,8 @@ pub fn run_gemma_api(cfg: GemmaInferenceConfig) -> Result<Receiver<Result<String
| Some(WhichModel::InstructV2_2B)
| Some(WhichModel::BaseV2_9B)
| Some(WhichModel::InstructV2_9B)
| None => { // default to V2 model
| None => {
// default to V2 model
let config: Config2 = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
let model = Model2::new(cfg.use_flash_attn, &config, vb)?;
Model::V2(model)

View File

@@ -105,7 +105,9 @@ fn discover_services(workspace_path: &str) -> Result<Vec<ServiceInfo>> {
.into_iter()
.filter_map(|e| e.ok())
{
if entry.file_name() == "Cargo.toml" && entry.path() != workspace_root.join("../../../Cargo.toml") {
if entry.file_name() == "Cargo.toml"
&& entry.path() != workspace_root.join("../../../Cargo.toml")
{
if let Ok(service_info) = parse_cargo_toml(entry.path()) {
services.push(service_info);
}

View File

@@ -1,5 +1,5 @@
use candle_transformers::models::mimi::candle;
use candle_core::{Device, Result, Tensor};
use candle_transformers::models::mimi::candle;
pub const IMAGENET_MEAN: [f32; 3] = [0.485f32, 0.456, 0.406];
pub const IMAGENET_STD: [f32; 3] = [0.229f32, 0.224, 0.225];

View File

@@ -8,8 +8,10 @@ pub mod coco_classes;
pub mod imagenet;
pub mod token_output_stream;
pub mod wav;
use candle_core::{Device, Tensor, utils::{cuda_is_available, metal_is_available}};
use candle_core::{
utils::{cuda_is_available, metal_is_available},
Device, Tensor,
};
pub fn device(cpu: bool) -> Result<Device, anyhow::Error> {
if cpu {
@@ -126,7 +128,7 @@ pub fn hub_load_safetensors(
repo.get(v)
.map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))
})
.collect::<Result<Vec<_>, std::io::Error, >>()?;
.collect::<Result<Vec<_>, std::io::Error>>()?;
Ok(safetensors_files)
}
@@ -136,7 +138,8 @@ pub fn hub_load_local_safetensors<P: AsRef<std::path::Path>>(
) -> Result<Vec<std::path::PathBuf>, anyhow::Error> {
let path = path.as_ref();
let jsfile = std::fs::File::open(path.join(json_file))?;
let json: serde_json::Value = serde_json::from_reader(&jsfile).map_err(candle_core::Error::wrap)?;
let json: serde_json::Value =
serde_json::from_reader(&jsfile).map_err(candle_core::Error::wrap)?;
let weight_map = match json.get("weight_map") {
None => anyhow::bail!("no weight map in {json_file:?}"),
Some(serde_json::Value::Object(map)) => map,