predict-otron-9000
AI inference Server with OpenAI-compatible API (Limited Features)
> This project is an educational aide for bootstrapping my understanding of language model inferencing at the lowest levels I can, serving as a "rubber-duck" solution for Kubernetes based performance-oriented inference capabilities on air-gapped networks.
> By isolating application behaviors in components at the crate level, development reduces to a short feedback loop for validation and integration, ultimately smoothing the learning curve for scalable AI systems.
Stability is currently best-effort. Many models require unique configuration. When stability is achieved, this project will be promoted to the seemueller-io GitHub organization under a different name.
A comprehensive multi-service AI platform built around local LLM inference, embeddings, and web interfaces.
~~~shell
./scripts/run.sh
~~~
## Project Overview
The predict-otron-9000 is a flexible AI platform that provides:
- **Local LLM Inference**: Run Gemma and Llama models locally with CPU or GPU acceleration
- **Embeddings Generation**: Create text embeddings with FastEmbed
- **Web Interface**: Interact with models through a Leptos WASM chat interface
- **TypeScript CLI**: Command-line client for testing and automation
- **Production Deployment**: Docker and Kubernetes deployment options
The system supports both CPU and GPU acceleration (CUDA/Metal), with intelligent fallbacks and platform-specific optimizations.
## Features
- **OpenAI Compatible**: API endpoints match OpenAI's format for easy integration
- **Text Embeddings**: Generate high-quality text embeddings using FastEmbed
- **Text Generation**: Chat completions with OpenAI-compatible API using Gemma and Llama models (various sizes including instruction-tuned variants)
- **Performance Optimized**: Efficient caching and platform-specific optimizations for improved throughput
- **Web Chat Interface**: Leptos chat interface
- **Flexible Deployment**: Run as monolithic service or microservices architecture
## Architecture Overview
### Workspace Structure
The project uses a 9-crate Rust workspace plus TypeScript components:
```
crates/
├── predict-otron-9000/ # Main orchestration server (Rust 2024)
├── inference-engine/ # Multi-model inference orchestrator (Rust 2021)
├── embeddings-engine/ # FastEmbed embeddings service (Rust 2024)
└── chat-ui/ # WASM web frontend (Rust 2021)
integration/
├── cli/ # CLI client crate (Rust 2024)
│ └── package/
│ └── cli.ts # TypeScript/Bun CLI client
├── gemma-runner/ # Gemma model inference via Candle (Rust 2021)
├── llama-runner/ # Llama model inference via Candle (Rust 2021)
├── helm-chart-tool/ # Kubernetes deployment tooling (Rust 2024)
└── utils/ # Shared utilities (Rust 2021)
```
### Service Architecture
- **Main Server** (port 8080): Orchestrates inference and embeddings services
- **Embeddings Service** (port 8080): Standalone FastEmbed service with OpenAI API compatibility
- **Web Frontend** (port 8788): chat-ui WASM app
- **CLI Client**: TypeScript/Bun client for testing and automation
### Deployment Modes
The architecture supports multiple deployment patterns:
1. **Development Mode**: All services run in a single process for simplified development
2. **Docker Monolithic**: Single containerized service handling all functionality
3. **Kubernetes Microservices**: Separate services for horizontal scalability and fault isolation
## Build and Configuration
### Dependencies and Environment Prerequisites
#### Rust Toolchain
- **Editions**: Mixed - main services use Rust 2024, some components use 2021
- **Recommended**: Latest stable Rust toolchain: `rustup default stable && rustup update`
- **Developer tools**:
- `rustup component add rustfmt` (formatting)
- `rustup component add clippy` (linting)
#### Node.js/Bun Toolchain
- **Bun**: Required for TypeScript CLI client: `curl -fsSL https://bun.sh/install | bash`
- **Node.js**: Alternative to Bun, supports OpenAI SDK v5.16.0+
#### ML Framework Dependencies
- **Candle**: Version 0.9.1 with conditional compilation:
- macOS: Metal support with CPU fallback for stability
- Linux: CUDA support with CPU fallback
- CPU-only: Supported on all platforms
- **FastEmbed**: Version 4.x for embeddings functionality
#### Hugging Face Access
- **Required for**: Gemma model downloads (gated models)
- **Authentication**:
- CLI: `pip install -U "huggingface_hub[cli]" && huggingface-cli login`
- Environment: `export HF_TOKEN=""`
- **Cache management**: `export HF_HOME="$PWD/.hf-cache"` (optional, keeps cache local)
- **Model access**: Accept Gemma model licenses on Hugging Face before use
#### Platform-Specific Notes
- **macOS**: Metal acceleration available but routed to CPU for Gemma v3 stability
- **Linux**: CUDA support with BF16 precision on GPU, F32 on CPU
- **Conditional compilation**: Handled automatically per platform in Cargo.toml
### Build Procedures
#### Full Workspace Build
```bash
cargo build --workspace --release
```
#### Individual Services
**Main Server:**
```bash
cargo build --bin predict-otron-9000 --release
```
**Inference Engine CLI:**
```bash
cargo build --bin cli --package inference-engine --release
```
**Embeddings Service:**
```bash
cargo build --bin embeddings-engine --release
```
### Running Services
#### Main Server (Port 8080)
```bash
./scripts/run_server.sh
```
- Respects `SERVER_PORT` (default: 8080) and `RUST_LOG` (default: info)
- Boots with default model: `gemma-3-1b-it`
- Requires HF authentication for first-time model download
#### Web Frontend (Port 8788)
```bash
cd crates/chat-ui
./run.sh
```
- Serves chat-ui WASM frontend on port 8788
- Sets required RUSTFLAGS for WebAssembly getrandom support
- Auto-reloads during development
#### TypeScript CLI Client
```bash
# List available models
cd integration/cli/package && bun run cli.ts --list-models
# Chat completion
cd integration/cli/package && bun run cli.ts "What is the capital of France?"
# With specific model
cd integration/cli/package && bun run cli.ts --model gemma-3-1b-it --prompt "Hello, world!"
# Show help
cd integration/cli/package && bun run cli.ts --help
```
## API Usage
### Health Checks and Model Inventory
```bash
curl -s http://localhost:8080/v1/models | jq
```
### Chat Completions
**Non-streaming:**
```bash
curl -s http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default",
"messages": [{"role": "user", "content": "Say hello"}],
"max_tokens": 64
}' | jq
```
**Streaming (Server-Sent Events):**
```bash
curl -N http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default",
"messages": [{"role": "user", "content": "Tell a short joke"}],
"stream": true,
"max_tokens": 64
}'
```
**Model Specification:**
- Use `"model": "default"` for configured model
- Or specify exact model ID: `"model": "gemma-3-1b-it"`
- Requests with unknown models will be rejected
### Embeddings API
Generate text embeddings compatible with OpenAI's embeddings API.
**Endpoint**: `POST /v1/embeddings`
**Request Body**:
```json
{
"input": "Your text to embed",
"model": "nomic-embed-text-v1.5"
}
```
**Response**:
```json
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [0.1, 0.2, 0.3]
}
],
"model": "nomic-embed-text-v1.5",
"usage": {
"prompt_tokens": 0,
"total_tokens": 0
}
}
```
### Web Frontend
- Navigate to `http://localhost:8788`
- Real-time chat interface with the inference server
- Supports streaming responses and conversation history
## Testing
### Test Categories
1. **Offline/fast tests**: No network or model downloads required
2. **Online tests**: Require HF authentication and model downloads
3. **Integration tests**: Multi-service end-to-end testing
### Quick Start: Offline Tests
**Prompt formatting tests:**
```bash
cargo test --workspace build_gemma_prompt
```
**Model metadata tests:**
```bash
cargo test --workspace which_
```
These verify core functionality without requiring HF access.
### Full Test Suite (Requires HF)
**Prerequisites:**
1. Accept Gemma model licenses on Hugging Face
2. Authenticate: `huggingface-cli login` or `export HF_TOKEN=...`
3. Optional: `export HF_HOME="$PWD/.hf-cache"`
**Run all tests:**
```bash
cargo test --workspace
```
### Integration Testing
**End-to-end test script:**
```bash
./scripts/smoke_test.sh
```
This script:
- Starts the server in background with proper cleanup
- Waits for server readiness via health checks
- Runs CLI tests for model listing and chat completion
- Includes 60-second timeout and process management
## Development
### Code Style and Tooling
**Formatting:**
```bash
cargo fmt --all
```
**Linting:**
```bash
cargo clippy --workspace --all-targets -- -D warnings
```
**Logging:**
- Server uses `tracing` framework
- Control via `RUST_LOG` (e.g., `RUST_LOG=debug ./scripts/run_server.sh`)
### Adding Tests
**For fast, offline tests:**
- Exercise pure logic without tokenizers/models
- Use descriptive names for easy filtering: `cargo test specific_test_name`
- Example patterns: prompt construction, metadata selection, tensor math
**Process:**
1. Add test to existing module
2. Run filtered: `cargo test --workspace new_test_name`
3. Verify in full suite: `cargo test --workspace`
### OpenAI API Compatibility
**Features:**
- POST `/v1/chat/completions` with streaming and non-streaming
- Single configured model enforcement (use `"model": "default"`)
- Gemma-style prompt formatting with ``/`` markers
- System prompt injection into first user turn
- Repetition detection and early stopping in streaming mode
**CORS:**
- Fully open by default (`tower-http CorsLayer::Any`)
- Adjust for production deployment
### Architecture Details
**Device Selection:**
- Automatic device/dtype selection
- CPU: Universal fallback (F32 precision)
- CUDA: BF16 precision on compatible GPUs
- Metal: Available but routed to CPU for Gemma v3 stability
**Model Loading:**
- Single-file `model.safetensors` preferred
- Falls back to index resolution via `utilities_lib::hub_load_safetensors`
- HF cache populated on first access
**Multi-Service Design:**
- Main server orchestrates inference and embeddings
- Services can run independently for horizontal scaling
- Docker/Kubernetes metadata included for deployment
## Deployment
### Docker Support
All services include Docker metadata in `Cargo.toml`:
**Main Server:**
- Image: `ghcr.io/geoffsee/predict-otron-9000:latest`
- Port: 8080
**Inference Service:**
- Image: `ghcr.io/geoffsee/inference-service:latest`
- Port: 8080
**Embeddings Service:**
- Image: `ghcr.io/geoffsee/embeddings-service:latest`
- Port: 8080
**Web Frontend:**
- Image: `ghcr.io/geoffsee/chat-ui:latest`
- Port: 8788
**Docker Compose:**
```bash
# Start all services
docker-compose up -d
# Check logs
docker-compose logs -f
# Stop services
docker-compose down
```
### Kubernetes Support
All services include Kubernetes manifest metadata:
- Single replica deployments by default
- Service-specific port configurations
- Ready for horizontal pod autoscaling
For Kubernetes deployment details, see the [ARCHITECTURE.md](docs/ARCHITECTURE.md) document.
### Build Artifacts
**Ignored by Git:**
- `target/` (Rust build artifacts)
- `node_modules/` (Node.js dependencies)
- `dist/` (Frontend build output)
- `.fastembed_cache/` (FastEmbed model cache)
- `.hf-cache/` (Hugging Face cache, if configured)
## Common Issues and Solutions
### Authentication/Licensing
**Symptom:** 404 or permission errors fetching models
**Solution:**
1. Accept Gemma model licenses on Hugging Face
2. Authenticate with `huggingface-cli login` or `HF_TOKEN`
3. Verify token with `huggingface-cli whoami`
### GPU Issues
**Symptom:** OOM errors or GPU panics
**Solution:**
1. Test on CPU first: ensure `CUDA_VISIBLE_DEVICES=""` if needed
2. Check available VRAM vs model requirements
3. Consider using smaller model variants
### Model Mismatch Errors
**Symptom:** 400 errors with `type=model_mismatch`
**Solution:**
- Use `"model": "default"` in API requests
- Or match configured model ID exactly: `"model": "gemma-3-1b-it"`
### Frontend Build Issues
**Symptom:** WASM compilation failures
**Solution:**
1. Install required targets: `rustup target add wasm32-unknown-unknown`
2. Check RUSTFLAGS in chat-ui/run.sh
### Network/Timeout Issues
**Symptom:** First-time model downloads timing out
**Solution:**
1. Ensure stable internet connection
2. Consider using local HF cache: `export HF_HOME="$PWD/.hf-cache"`
3. Download models manually with `huggingface-cli`
## Minimal End-to-End Verification
**Build verification:**
```bash
cargo build --workspace --release
```
**Fast offline tests:**
```bash
cargo test --workspace build_gemma_prompt
cargo test --workspace which_
```
**Service startup:**
```bash
./scripts/run_server.sh &
sleep 10 # Wait for server startup
curl -s http://localhost:8080/v1/models | jq
```
**CLI client test:**
```bash
cd integration/cli/package && bun run cli.ts "What is 2+2?"
```
**Web frontend:**
```bash
cd crates/chat-ui && ./run.sh &
# Navigate to http://localhost:8788
```
**Integration test:**
```bash
./scripts/smoke_test.sh
```
**Cleanup:**
```bash
pkill -f "predict-otron-9000"
```
For networked tests and full functionality, ensure Hugging Face authentication is configured as described above.
## Further Reading
### Documentation
- [Architecture](docs/ARCHITECTURE.md) - Detailed architectural diagrams and deployment patterns
- [Server Configuration Guide](docs/SERVER_CONFIG.md) - Detailed server configuration options
- [Testing Documentation](docs/TESTING.md) - Comprehensive testing guide
- [Performance Benchmarking](docs/BENCHMARKING.md) - Instructions for benchmarking
## Contributing
1. Fork the repository
2. Create a feature branch: `git checkout -b feature-name`
3. Make your changes and add tests
4. Ensure all tests pass: `cargo test`
5. Submit a pull request
_Warning: Do NOT use this in production unless you are cool like that._