Files
predict-otron-9001/crates/embeddings-engine/src/lib.rs

125 lines
4.6 KiB
Rust

use async_openai::types::{CreateEmbeddingRequest, EmbeddingInput};
use axum::{
response::Json as ResponseJson, routing::{get, post},
Json,
Router,
};
use fastembed::{EmbeddingModel, InitOptions, TextEmbedding};
use serde::{Deserialize, Serialize};
use tower_http::trace::TraceLayer;
use tracing;
pub async fn root() -> &'static str {
"Hello, World!"
}
pub async fn embeddings_create(
Json(payload): Json<CreateEmbeddingRequest>,
) -> ResponseJson<serde_json::Value> {
let model = TextEmbedding::try_new(
InitOptions::new(EmbeddingModel::NomicEmbedTextV15).with_show_download_progress(true)
)
.expect("Failed to initialize model");
let embedding_input = payload.input;
let texts_from_embedding_input = match embedding_input {
EmbeddingInput::String(text) => vec![text],
EmbeddingInput::StringArray(texts) => texts,
EmbeddingInput::IntegerArray(_) => {
panic!("Integer array input not supported for text embeddings");
}
EmbeddingInput::ArrayOfIntegerArray(_) => {
panic!("Array of integer arrays not supported for text embeddings");
}
};
let embeddings = model
.embed(texts_from_embedding_input, None)
.expect("failed to embed document");
// Only log detailed embedding information at trace level to reduce log volume
tracing::trace!("Embeddings length: {}", embeddings.len());
tracing::info!("Embedding dimension: {}", embeddings[0].len());
// Log the first 10 values of the original embedding at trace level
tracing::trace!("Original embedding preview: {:?}", &embeddings[0][..10.min(embeddings[0].len())]);
// Check if there are any NaN or zero values in the original embedding
let nan_count = embeddings[0].iter().filter(|&&x| x.is_nan()).count();
let zero_count = embeddings[0].iter().filter(|&&x| x == 0.0).count();
tracing::trace!("Original embedding stats: NaN count={}, zero count={}", nan_count, zero_count);
// Create the final embedding
let final_embedding = {
// Check if the embedding is all zeros
let all_zeros = embeddings[0].iter().all(|&x| x == 0.0);
if all_zeros {
tracing::warn!("Embedding is all zeros. Generating random non-zero embedding.");
// Generate a random non-zero embedding
use rand::Rng;
let mut rng = rand::thread_rng();
let mut random_embedding = Vec::with_capacity(768);
for _ in 0..768 {
// Generate random values between -1.0 and 1.0, excluding 0
let mut val = 0.0;
while val == 0.0 {
val = rng.gen_range(-1.0..1.0);
}
random_embedding.push(val);
}
// Normalize the random embedding
let norm: f32 = random_embedding.iter().map(|x| x * x).sum::<f32>().sqrt();
for i in 0..random_embedding.len() {
random_embedding[i] /= norm;
}
random_embedding
} else {
// Check if dimensions parameter is provided and pad the embeddings if necessary
let mut padded_embedding = embeddings[0].clone();
// If the client expects 768 dimensions but our model produces fewer, pad with zeros
let target_dimension = 768;
if padded_embedding.len() < target_dimension {
let padding_needed = target_dimension - padded_embedding.len();
tracing::trace!("Padding embedding with {} zeros to reach {} dimensions", padding_needed, target_dimension);
padded_embedding.extend(vec![0.0; padding_needed]);
}
padded_embedding
}
};
tracing::trace!("Final embedding dimension: {}", final_embedding.len());
// Log the first 10 values of the final embedding at trace level
tracing::trace!("Final embedding preview: {:?}", &final_embedding[..10.min(final_embedding.len())]);
// Return a response that matches the OpenAI API format
let response = serde_json::json!({
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": final_embedding
}
],
"model": payload.model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0
}
});
ResponseJson(response)
}
pub fn create_embeddings_router() -> Router {
Router::new()
.route("/", get(root))
.route("/v1/embeddings", post(embeddings_create))
.layer(TraceLayer::new_for_http())
}