3 Commits

Author SHA1 Message Date
Geoff Seemueller
0f4ac8f76c Merge branch 'main' into dependabot/bun/framer-motion-12.18.1 2025-06-25 16:23:12 -04:00
Geoff Seemueller
15d57799ca Merge branch 'main' into dependabot/bun/framer-motion-12.18.1 2025-06-25 16:20:44 -04:00
dependabot[bot]
ff40126140 Bump framer-motion from 11.18.2 to 12.18.1
Bumps [framer-motion](https://github.com/motiondivision/motion) from 11.18.2 to 12.18.1.
- [Changelog](https://github.com/motiondivision/motion/blob/main/CHANGELOG.md)
- [Commits](https://github.com/motiondivision/motion/compare/v11.18.2...v12.18.1)

---
updated-dependencies:
- dependency-name: framer-motion
  dependency-version: 12.18.1
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2025-06-18 14:42:53 +00:00
80 changed files with 337 additions and 3731 deletions

View File

@@ -1,3 +0,0 @@
/.wrangler/
/.open-gsio/
/node_modules/

17
.gitignore vendored
View File

@@ -7,22 +7,11 @@
**/.idea/
**/html/
**/.env
packages/client/public/static/fonts/*
**/secrets.json
**/.dev.vars
packages/client/public/sitemap.xml
packages/client/public/robots.txt
wrangler.dev.jsonc
/packages/client/public/static/fonts/
/packages/client/public/robots.txt
/packages/client/public/sitemap.xml
/packages/client/public/yachtpit.html
/packages/client/public/yachtpit.js
/packages/client/public/yachtpit_bg.wasm
/packages/client/public/assets/
/packages/client/public/apple-touch-icon-180x180.png
/packages/client/public/icon.ico
/packages/client/public/maskable-icon-512x512.png
/packages/client/public/pwa-64x64.png
/packages/client/public/pwa-192x192.png
/packages/client/public/pwa-512x512.png
packages/client/public/yachtpit_bg*
/project/

View File

@@ -1,51 +0,0 @@
FROM oven/bun:latest
WORKDIR /app
# Copy package files first for better caching
COPY package.json bun.lock ./
# Create directory structure for all packages
RUN mkdir -p packages/ai packages/ai/src/types packages/client packages/coordinators packages/env packages/router packages/schema packages/scripts packages/server packages/services packages/cloudflare-workers/analytics packages/cloudflare-workers/open-gsio
# Copy package.json files for all packages
COPY packages/ai/package.json ./packages/ai/
COPY packages/ai/src/types/package.json ./packages/ai/src/types/
COPY packages/client/package.json ./packages/client/
COPY packages/coordinators/package.json ./packages/coordinators/
COPY packages/env/package.json ./packages/env/
COPY packages/router/package.json ./packages/router/
COPY packages/schema/package.json ./packages/schema/
COPY packages/scripts/package.json ./packages/scripts/
COPY packages/server/package.json ./packages/server/
COPY packages/services/package.json ./packages/services/
COPY packages/cloudflare-workers/analytics/package.json ./packages/cloudflare-workers/analytics/
COPY packages/cloudflare-workers/open-gsio/package.json ./packages/cloudflare-workers/open-gsio/
# Install dependencies
RUN bun install
# Copy the rest of the application
COPY . .
# Create .env file if it doesn't exist
RUN touch ./packages/server/.env
# Build client and server
RUN bun build:client && bun build:server
# Ensure the client directories exist
RUN mkdir -p ./client/public ./client/dist/client
# Copy client files to the expected locations
RUN cp -r ./packages/client/public/* ./client/public/ || true
RUN cp -r ./packages/client/dist/* ./client/dist/ || true
EXPOSE 3003
# Verify server.js exists
RUN test -f ./packages/server/dist/server.js || (echo "Error: server.js not found" && exit 1)
CMD ["bun", "./packages/server/dist/server.js"]

View File

@@ -14,7 +14,6 @@ This is a full-stack Conversational AI.
- [Installation](#installation)
- [Deployment](#deployment)
- [Docker](#docker)
- [Local Inference](#local-inference)
- [mlx-omni-server (default)](#mlx-omni-server)
- [Adding models](#adding-models-for-local-inference-apple-silicon)
@@ -41,59 +40,6 @@ This is a full-stack Conversational AI.
> Note: Subsequent deployments should omit `bun run deploy:secrets`
## Docker
You can run the server using Docker. The image is large but will be slimmed down in future commits.
### Building the Docker Image
```bash
docker compose build
# OR
docker build -t open-gsio .
```
### Running the Docker Container
```bash
docker run -p 3003:3003 \
-e GROQ_API_KEY=your_groq_api_key \
-e FIREWORKS_API_KEY=your_fireworks_api_key \
open-gsio
```
You can omit any environment variables that you don't need. The server will be available at http://localhost:3003.
### Using Docker Compose
A `docker-compose.yml` file is provided in the repository. You can edit it to add your API keys:
```yaml
version: '3'
services:
open-gsio:
build: .
ports:
- "3003:3003"
environment:
- GROQ_API_KEY=your_groq_api_key
- FIREWORKS_API_KEY=your_fireworks_api_key
# Other environment variables are included in the file
restart: unless-stopped
```
Then run:
```bash
docker compose up
```
Or to run in detached mode:
```bash
docker compose up -d
```
## Local Inference
> Local inference is supported for Ollama and mlx-omni-server. OpenAI compatible servers can be used by overriding OPENAI_API_KEY and OPENAI_API_ENDPOINT.
@@ -170,8 +116,6 @@ I would like to express gratitude to the following projects, libraries, and indi
- [Vike](https://vike.dev/) - Framework for server-side rendering and routing
- [Cloudflare Workers](https://developers.cloudflare.com/workers/) - Serverless execution environment
- [Bun](https://bun.sh/) - JavaScript runtime and toolkit
- [Marked.js](https://github.com/markedjs/marked) - Markdown Rendering
- [Shiki](https://github.com/shikijs/shiki) - Syntax Highlighting
- [itty-router](https://github.com/kwhitley/itty-router) - Lightweight router for serverless environments
- [MobX-State-Tree](https://mobx-state-tree.js.org/) - State management solution
- [OpenAI SDK](https://github.com/openai/openai-node) - Client for AI model integration

492
bun.lock

File diff suppressed because it is too large Load Diff

View File

@@ -1,13 +0,0 @@
version: '3'
services:
open-gsio:
image: open-gsio:latest
build:
pull: false
context: .
dockerfile: Dockerfile
ports:
- "3003:3003"
env_file:
- ./packages/server/.env
restart: unless-stopped

View File

@@ -15,7 +15,6 @@
"server:dev": "bun build:client && (cd packages/server && bun run dev)",
"build": "(cd packages/cloudflare-workers/open-gsio && bun run deploy:dry-run)",
"build:client": "(cd packages/client && bun run vite build)",
"build:server": "bun --filter=@open-gsio/server run build",
"deploy": "(cd packages/cloudflare-workers/open-gsio && bun run deploy)",
"deploy:secrets": "wrangler secret bulk secrets.json -c packages/cloudflare-workers/open-gsio/wrangler.jsonc",
"openai:local:mlx": "packages/scripts/start_inference_server.sh mlx-omni-server",
@@ -31,7 +30,7 @@
"@types/bun": "^1.2.17",
"@typescript-eslint/eslint-plugin": "^8.35.0",
"@typescript-eslint/parser": "^8.35.0",
"eslint": "^8",
"eslint": "^9.29.0",
"eslint-config-prettier": "^10.1.5",
"eslint-plugin-import": "^2.32.0",
"eslint-plugin-prettier": "^5.5.1",
@@ -40,9 +39,5 @@
},
"peerDependencies": {
"typescript": "^5.8.3"
},
"dependencies": {
"@chakra-ui/icons": "^2.2.4"
},
"packageManager": "pnpm@10.10.0+sha512.d615db246fe70f25dcfea6d8d73dee782ce23e2245e3c4f6f888249fb568149318637dca73c2c5c8ef2a4ca0d5657fb9567188bfab47f566d1ee6ce987815c39"
}
}

View File

@@ -40,7 +40,6 @@
"@open-gsio/env": "workspace:*",
"@open-gsio/schema": "workspace:*",
"@anthropic-ai/sdk": "^0.55.0",
"@zilliz/milvus2-sdk-node": "^2.6.0",
"openai": "^5.0.1",
"wrangler": "^4.18.0",
"vitest": "^3.1.4",

View File

@@ -46,6 +46,7 @@ describe('AssistantSdk', () => {
expect(prompt).toContain('# Assistant Knowledge');
expect(prompt).toContain('### Date: ');
expect(prompt).toContain('### Web Host: ');
expect(prompt).toContain('### User Location: ');
expect(prompt).toContain('### Timezone: ');
});

View File

@@ -22,10 +22,9 @@ export class AssistantSdk {
const currentTime = `${now.getHours()}:${formattedMinutes} ${now.getSeconds()}s`;
return `# Assistant Knowledge
## Assistant Name
### open-gsio
## Current Context
### Date: ${currentDate} ${currentTime}
### Web Host: open-gsio.seemueller.workers.dev
${maxTokens ? `### Max Response Length: ${maxTokens} tokens (maximum)` : ''}
### Lexicographical Format: Markdown
### User Location: ${userLocation || 'Unknown'}

View File

@@ -2,7 +2,6 @@ import { Schema } from '@open-gsio/schema';
import type { Instance } from 'mobx-state-tree';
import { OpenAI } from 'openai';
import type Message from '../../../schema/src/models/Message.ts';
import { AssistantSdk } from '../assistant-sdk';
import { ProviderRepository } from '../providers/_ProviderRepository.ts';
import type {

View File

@@ -1,5 +1,5 @@
import { OpenAI } from 'openai';
import { describe, it, expect, vi, beforeEach } from 'vitest';
import { describe, it, expect, vi } from 'vitest';
import {
BaseChatProvider,
@@ -29,7 +29,7 @@ class TestChatProvider extends BaseChatProvider {
}
// Mock dependencies
vi.mock('../../chat-sdk/chat-sdk.ts', () => ({
vi.mock('../../lib/chat-sdk', () => ({
default: {
buildAssistantPrompt: vi.fn().mockReturnValue('Assistant prompt'),
buildMessageChain: vi.fn().mockReturnValue([
@@ -39,26 +39,6 @@ vi.mock('../../chat-sdk/chat-sdk.ts', () => ({
},
}));
vi.mock('../../tools/agentic-rag.ts', () => ({
agenticRAG: vi.fn(),
AgenticRAGTools: {
type: 'function',
function: {
name: 'agentic_rag',
description: 'Test agentic RAG tool',
parameters: {
type: 'object',
properties: {
action: { type: 'string', enum: ['search_knowledge'] },
query: { type: 'string' },
collection_name: { type: 'string' },
},
required: ['action', 'collection_name'],
},
},
},
}));
describe('ChatStreamProvider', () => {
it('should define the required interface', () => {
// Verify the interface has the required method
@@ -70,616 +50,26 @@ describe('ChatStreamProvider', () => {
});
});
describe('BaseChatProvider - Model Tool Calling', () => {
let provider: TestChatProvider;
let mockOpenAI: any;
let dataCallback: any;
let commonParams: CommonProviderParams;
beforeEach(() => {
vi.clearAllMocks();
provider = new TestChatProvider();
dataCallback = vi.fn();
mockOpenAI = {
chat: {
completions: {
create: vi.fn(),
},
},
};
commonParams = {
openai: mockOpenAI,
systemPrompt: 'Test system prompt',
preprocessedContext: {},
maxTokens: 1000,
messages: [{ role: 'user', content: 'Test message' }],
model: 'gpt-4',
env: {} as any,
};
});
describe('BaseChatProvider', () => {
it('should implement the ChatStreamProvider interface', () => {
// Create a concrete implementation
const provider = new TestChatProvider();
// Verify it implements the interface
expect(provider.handleStream).toBeInstanceOf(Function);
expect(provider.getOpenAIClient).toBeInstanceOf(Function);
expect(provider.getStreamParams).toBeInstanceOf(Function);
expect(provider.processChunk).toBeInstanceOf(Function);
});
it('should handle regular text streaming without tool calls', async () => {
// Mock stream chunks for regular text response
const chunks = [
{
choices: [
{
delta: { content: 'Hello ' },
finish_reason: null,
},
],
},
{
choices: [
{
delta: { content: 'world!' },
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'stop',
},
],
},
];
it('should have abstract methods that need to be implemented', () => {
// This test verifies that the abstract methods exist
// We can't instantiate BaseChatProvider directly, so we use the concrete implementation
const provider = new TestChatProvider();
mockOpenAI.chat.completions.create.mockResolvedValue({
async *[Symbol.asyncIterator]() {
for (const chunk of chunks) {
yield chunk;
}
},
});
await provider.handleStream(commonParams, dataCallback);
expect(mockOpenAI.chat.completions.create).toHaveBeenCalledWith(
expect.objectContaining({
tools: expect.arrayContaining([
expect.objectContaining({
type: 'function',
function: expect.objectContaining({
name: 'agentic_rag',
}),
}),
]),
}),
);
});
it('should handle tool calls in streaming response', async () => {
const { agenticRAG } = await import('../../tools/agentic-rag.ts');
vi.mocked(agenticRAG).mockResolvedValue({
success: true,
data: {
results: ['Test result'],
analysis: { needsRetrieval: false },
},
});
// Mock stream chunks for tool call response
const chunks = [
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
id: 'call_123',
type: 'function',
function: {
name: 'agentic_rag',
arguments:
'{"action": "search_knowledge", "query": "test query", "collection_name": "test_collection"}',
},
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'tool_calls',
},
],
},
];
// Second stream for response after tool execution
const secondStreamChunks = [
{
choices: [
{
delta: { content: 'Based on the search results: Test result' },
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'stop',
},
],
},
];
let callCount = 0;
mockOpenAI.chat.completions.create.mockImplementation(() => {
callCount++;
if (callCount === 1) {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of chunks) {
yield chunk;
}
},
});
} else {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of secondStreamChunks) {
yield chunk;
}
},
});
}
});
await provider.handleStream(commonParams, dataCallback);
// Verify tool was called
expect(agenticRAG).toHaveBeenCalledWith({
action: 'search_knowledge',
query: 'test query',
collection_name: 'test_collection',
});
// Verify feedback messages were sent
expect(dataCallback).toHaveBeenCalledWith(
expect.objectContaining({
type: 'chat',
data: expect.objectContaining({
choices: expect.arrayContaining([
expect.objectContaining({
delta: expect.objectContaining({
content: expect.stringContaining('🔧 Invoking'),
}),
}),
]),
}),
}),
);
expect(dataCallback).toHaveBeenCalledWith(
expect.objectContaining({
type: 'chat',
data: expect.objectContaining({
choices: expect.arrayContaining([
expect.objectContaining({
delta: expect.objectContaining({
content: expect.stringContaining('📞 Calling agentic_rag'),
}),
}),
]),
}),
}),
);
});
it('should handle tool call streaming with incremental arguments', async () => {
const { agenticRAG } = await import('../../tools/agentic-rag.ts');
vi.mocked(agenticRAG).mockResolvedValue({
success: true,
data: { results: ['Test result'] },
});
// Mock stream chunks with incremental tool call arguments
const chunks = [
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
id: 'call_',
type: 'function',
function: { name: 'agentic_rag', arguments: '{"action": "search_' },
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
id: '123',
function: { arguments: 'knowledge", "query": "test", ' },
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
function: { arguments: '"collection_name": "test_collection"}' },
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'tool_calls',
},
],
},
];
const secondStreamChunks = [
{
choices: [
{
delta: { content: 'Response after tool call' },
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'stop',
},
],
},
];
let callCount = 0;
mockOpenAI.chat.completions.create.mockImplementation(() => {
callCount++;
if (callCount === 1) {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of chunks) {
yield chunk;
}
},
});
} else {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of secondStreamChunks) {
yield chunk;
}
},
});
}
});
await provider.handleStream(commonParams, dataCallback);
// Verify the complete tool call was assembled and executed
expect(agenticRAG).toHaveBeenCalledWith({
action: 'search_knowledge',
query: 'test',
collection_name: 'test_collection',
});
});
it('should prevent infinite tool call loops', async () => {
const { agenticRAG } = await import('../../tools/agentic-rag.ts');
vi.mocked(agenticRAG).mockResolvedValue({
success: true,
data: {
results: [],
analysis: { needsRetrieval: true },
retrieved_documents: [],
},
});
// Mock stream that always returns tool calls
const toolCallChunks = [
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
id: 'call_123',
type: 'function',
function: {
name: 'agentic_rag',
arguments:
'{"action": "search_knowledge", "query": "test", "collection_name": "test_collection"}',
},
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'tool_calls',
},
],
},
];
mockOpenAI.chat.completions.create.mockResolvedValue({
async *[Symbol.asyncIterator]() {
for (const chunk of toolCallChunks) {
yield chunk;
}
},
});
await provider.handleStream(commonParams, dataCallback);
// Should detect duplicate tool calls and force completion (up to 5 iterations based on maxToolCallIterations)
// In this case, it should stop after 2 calls due to duplicate detection, but could go up to 5
expect(mockOpenAI.chat.completions.create).toHaveBeenCalledTimes(2);
});
it('should handle tool call errors gracefully', async () => {
const { agenticRAG } = await import('../../tools/agentic-rag.ts');
vi.mocked(agenticRAG).mockRejectedValue(new Error('Tool execution failed'));
const chunks = [
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
id: 'call_123',
type: 'function',
function: {
name: 'agentic_rag',
arguments:
'{"action": "search_knowledge", "query": "test", "collection_name": "test_collection"}',
},
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'tool_calls',
},
],
},
];
const secondStreamChunks = [
{
choices: [
{
delta: { content: 'I apologize, but I encountered an error.' },
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'stop',
},
],
},
];
let callCount = 0;
mockOpenAI.chat.completions.create.mockImplementation(() => {
callCount++;
if (callCount === 1) {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of chunks) {
yield chunk;
}
},
});
} else {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of secondStreamChunks) {
yield chunk;
}
},
});
}
});
await provider.handleStream(commonParams, dataCallback);
// Should still complete without throwing
expect(mockOpenAI.chat.completions.create).toHaveBeenCalledTimes(2);
});
it('should prevent duplicate tool calls', async () => {
const { agenticRAG } = await import('../../tools/agentic-rag.ts');
vi.mocked(agenticRAG).mockResolvedValue({
success: true,
data: { results: ['Test result'] },
});
// Mock the same tool call twice
const chunks = [
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
id: 'call_123',
type: 'function',
function: {
name: 'agentic_rag',
arguments:
'{"action": "search_knowledge", "query": "test", "collection_name": "test_collection"}',
},
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'tool_calls',
},
],
},
];
// Second iteration with same tool call
let callCount = 0;
mockOpenAI.chat.completions.create.mockImplementation(() => {
callCount++;
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of chunks) {
yield chunk;
}
},
});
});
await provider.handleStream(commonParams, dataCallback);
// Should only execute the tool once, then force completion
expect(agenticRAG).toHaveBeenCalledTimes(1);
});
it('should handle invalid JSON in tool call arguments', async () => {
const chunks = [
{
choices: [
{
delta: {
tool_calls: [
{
index: 0,
id: 'call_123',
type: 'function',
function: {
name: 'agentic_rag',
arguments: '{"action": "search_knowledge", "invalid": json}', // Invalid JSON
},
},
],
},
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'tool_calls',
},
],
},
];
const secondStreamChunks = [
{
choices: [
{
delta: { content: 'I encountered an error parsing the tool arguments.' },
finish_reason: null,
},
],
},
{
choices: [
{
delta: {},
finish_reason: 'stop',
},
],
},
];
let callCount = 0;
mockOpenAI.chat.completions.create.mockImplementation(() => {
callCount++;
if (callCount === 1) {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of chunks) {
yield chunk;
}
},
});
} else {
return Promise.resolve({
async *[Symbol.asyncIterator]() {
for (const chunk of secondStreamChunks) {
yield chunk;
}
},
});
}
});
// Should not throw, should handle gracefully
await expect(provider.handleStream(commonParams, dataCallback)).resolves.not.toThrow();
// Verify the abstract methods are implemented
expect(provider.getOpenAIClient).toBeDefined();
expect(provider.getStreamParams).toBeDefined();
expect(provider.processChunk).toBeDefined();
});
});

View File

@@ -1,7 +1,6 @@
import { OpenAI } from 'openai';
import ChatSdk from '../chat-sdk/chat-sdk.ts';
import { agenticRAG, AgenticRAGTools } from '../tools/agentic-rag.ts';
import type { GenericEnv } from '../types';
export interface CommonProviderParams {
@@ -36,296 +35,12 @@ export abstract class BaseChatProvider implements ChatStreamProvider {
});
const client = this.getOpenAIClient(param);
const streamParams = this.getStreamParams(param, safeMessages);
const stream = await client.chat.completions.create(streamParams);
const tools = [AgenticRAGTools];
const callFunction = async (name, args) => {
if (name === 'agentic_rag') {
return agenticRAG(args);
}
};
// Main conversation loop - handle tool calls properly
let conversationComplete = false;
let toolCallIterations = 0;
const maxToolCallIterations = 5; // Prevent infinite loops
let toolsExecuted = false; // Track if we've executed tools
const attemptedToolCalls = new Set<string>(); // Track attempted tool calls to prevent duplicates
while (!conversationComplete && toolCallIterations < maxToolCallIterations) {
const streamParams = this.getStreamParams(param, safeMessages);
// Only provide tools on the first call, after that force text response
const currentTools = toolsExecuted ? undefined : tools;
const stream = await client.chat.completions.create({ ...streamParams, tools: currentTools });
let assistantMessage = '';
const toolCalls: any[] = [];
for await (const chunk of stream as unknown as AsyncIterable<any>) {
// console.log('chunk', chunk);
// Handle tool calls
if (chunk.choices[0]?.delta?.tool_calls) {
const deltaToolCalls = chunk.choices[0].delta.tool_calls;
for (const deltaToolCall of deltaToolCalls) {
if (deltaToolCall.index !== undefined) {
// Initialize or get existing tool call
if (!toolCalls[deltaToolCall.index]) {
toolCalls[deltaToolCall.index] = {
id: deltaToolCall.id || '',
type: deltaToolCall.type || 'function',
function: {
name: deltaToolCall.function?.name || '',
arguments: deltaToolCall.function?.arguments || '',
},
};
} else {
// Append to existing tool call
if (deltaToolCall.function?.arguments) {
toolCalls[deltaToolCall.index].function.arguments +=
deltaToolCall.function.arguments;
}
if (deltaToolCall.function?.name) {
toolCalls[deltaToolCall.index].function.name += deltaToolCall.function.name;
}
if (deltaToolCall.id) {
toolCalls[deltaToolCall.index].id += deltaToolCall.id;
}
}
}
}
}
// Handle regular content
if (chunk.choices[0]?.delta?.content) {
assistantMessage += chunk.choices[0].delta.content;
}
// Check if stream is finished
if (chunk.choices[0]?.finish_reason) {
if (chunk.choices[0].finish_reason === 'tool_calls' && toolCalls.length > 0) {
// Increment tool call iterations counter
toolCallIterations++;
console.log(`Tool call iteration ${toolCallIterations}/${maxToolCallIterations}`);
// Execute tool calls and add results to conversation
console.log('Executing tool calls:', toolCalls);
// Limit to one tool call per iteration to prevent concurrent execution issues
// Also filter out duplicate tool calls
const uniqueToolCalls = toolCalls.filter(toolCall => {
const toolCallKey = `${toolCall.function.name}:${toolCall.function.arguments}`;
return !attemptedToolCalls.has(toolCallKey);
});
const toolCallsToExecute = uniqueToolCalls.slice(0, 1);
if (toolCallsToExecute.length === 0) {
console.log('All tool calls have been attempted already, forcing completion');
toolsExecuted = true;
conversationComplete = true;
break;
}
// Send feedback to user about tool invocation
dataCallback({
type: 'chat',
data: {
choices: [
{
delta: {
content: `\n\n🔧 Invoking ${toolCallsToExecute.length} tool${toolCallsToExecute.length > 1 ? 's' : ''}...\n`,
},
},
],
},
});
// Add assistant message with tool calls to conversation
safeMessages.push({
role: 'assistant',
content: assistantMessage || null,
tool_calls: toolCallsToExecute,
});
// Execute each tool call and add results
let needsMoreRetrieval = false;
for (const toolCall of toolCallsToExecute) {
if (toolCall.type === 'function') {
const name = toolCall.function.name;
console.log(`Calling function: ${name}`);
// Track this tool call attempt
const toolCallKey = `${toolCall.function.name}:${toolCall.function.arguments}`;
attemptedToolCalls.add(toolCallKey);
// Send feedback about specific tool being called
dataCallback({
type: 'chat',
data: {
choices: [
{
delta: {
content: `📞 Calling ${name}...`,
},
},
],
},
});
try {
const args = JSON.parse(toolCall.function.arguments);
console.log(`Function arguments:`, args);
const result = await callFunction(name, args);
console.log(`Function result:`, result);
// Check if agentic-rag indicates more retrieval is needed
if (
name === 'agentic_rag' &&
result?.data?.analysis?.needsRetrieval === true &&
(!result?.data?.retrieved_documents ||
result.data.retrieved_documents.length === 0)
) {
needsMoreRetrieval = true;
console.log('Agentic RAG indicates more retrieval needed');
// Add context about previous attempts to help LLM make better decisions
const attemptedActions = Array.from(attemptedToolCalls)
.filter(key => key.startsWith('agentic_rag:'))
.map(key => {
try {
const args = JSON.parse(key.split(':', 2)[1]);
return `${args.action} with query: "${args.query}"`;
} catch {
return 'unknown action';
}
});
if (attemptedActions.length > 0) {
safeMessages.push({
role: 'system',
content: `Previous retrieval attempts: ${attemptedActions.join(', ')}. Consider trying a different approach or more specific query.`,
});
}
}
// Send feedback about tool completion
dataCallback({
type: 'chat',
data: {
choices: [
{
delta: {
content: `\n ${JSON.stringify(result)}`,
},
},
],
},
});
// Add tool result to conversation
safeMessages.push({
role: 'tool',
tool_call_id: toolCall.id,
content: JSON.stringify(result),
});
} catch (error) {
console.error(`Error executing tool ${name}:`, error);
// Send feedback about tool error
dataCallback({
type: 'chat',
data: {
choices: [
{
delta: {
content: ` ❌ Error\n`,
},
},
],
},
});
safeMessages.push({
role: 'tool',
tool_call_id: toolCall.id,
content: `Error: ${error.message}`,
});
}
}
}
// Only mark tools as executed if we don't need more retrieval
if (!needsMoreRetrieval) {
toolsExecuted = true;
}
// Send feedback that tool execution is complete
dataCallback({
type: 'chat',
data: {
choices: [
{
delta: {
content: `\n🎯 Tool execution complete. Generating response...\n\n`,
},
},
],
},
});
// Continue conversation with tool results
break;
} else {
// Regular completion - send final response
conversationComplete = true;
}
}
// Process chunk normally for non-tool-call responses
if (!chunk.choices[0]?.delta?.tool_calls) {
// console.log('after-tool-call-chunk', chunk);
const shouldBreak = await this.processChunk(chunk, dataCallback);
if (shouldBreak) {
conversationComplete = true;
break;
}
}
}
}
// Handle case where we hit maximum tool call iterations
if (toolCallIterations >= maxToolCallIterations && !conversationComplete) {
console.log('Maximum tool call iterations reached, forcing completion');
// Send a message indicating we've hit the limit and provide available information
dataCallback({
type: 'chat',
data: {
choices: [
{
delta: {
content:
'\n\n⚠ Maximum tool execution limit reached. Based on the available information, I can provide the following response:\n\n',
},
},
],
},
});
// Make one final call without tools to get a response based on the tool results
const finalStreamParams = this.getStreamParams(param, safeMessages);
const finalStream = await client.chat.completions.create({
...finalStreamParams,
tools: undefined, // Remove tools to force a text response
});
for await (const chunk of finalStream as unknown as AsyncIterable<any>) {
const shouldBreak = await this.processChunk(chunk, dataCallback);
if (shouldBreak) break;
}
for await (const chunk of stream as unknown as AsyncIterable<any>) {
const shouldBreak = await this.processChunk(chunk, dataCallback);
if (shouldBreak) break;
}
}
}

View File

@@ -15,21 +15,10 @@ export class FireworksAiChatProvider extends BaseChatProvider {
let modelPrefix = 'accounts/fireworks/models/';
if (param.model.toLowerCase().includes('yi-')) {
modelPrefix = 'accounts/yi-01-ai/models/';
} else if (param.model.toLowerCase().includes('/perplexity/')) {
modelPrefix = 'accounts/perplexity/models/';
} else if (param.model.toLowerCase().includes('/sentientfoundation/')) {
modelPrefix = 'accounts/sentientfoundation/models/';
} else if (param.model.toLowerCase().includes('/sentientfoundation-serverless/')) {
modelPrefix = 'accounts/sentientfoundation-serverless/models/';
} else if (param.model.toLowerCase().includes('/instacart/')) {
modelPrefix = 'accounts/instacart/models/';
}
const finalModelIdentifier = param.model.includes(modelPrefix)
? param.model
: `${modelPrefix}${param.model}`;
console.log('using fireworks model', finalModelIdentifier);
return {
model: finalModelIdentifier,
model: `${modelPrefix}${param.model}`,
messages: safeMessages,
stream: true,
};

View File

@@ -1,259 +0,0 @@
import { describe, it, expect, vi, beforeEach } from 'vitest';
import { agenticRAG, AgenticRAGTools } from '../agentic-rag';
// Mock the dependencies
vi.mock('@zilliz/milvus2-sdk-node', () => ({
MilvusClient: vi.fn().mockImplementation(() => ({
listCollections: vi.fn().mockResolvedValue({
collection_names: ['family_domestic', 'business_corporate'],
data: [{ name: 'family_domestic' }, { name: 'business_corporate' }],
}),
search: vi.fn().mockResolvedValue({
results: [
{
content: 'Test document about AI and machine learning',
score: 0.85,
metadata: '{"category": "AI", "author": "Test Author"}',
},
{
content: 'Another document about neural networks',
score: 0.75,
metadata: '{"category": "ML", "author": "Another Author"}',
},
],
}),
insert: vi.fn().mockResolvedValue({ success: true }),
createCollection: vi.fn().mockResolvedValue({ success: true }),
createIndex: vi.fn().mockResolvedValue({ success: true }),
})),
DataType: {
VarChar: 'VarChar',
FloatVector: 'FloatVector',
},
}));
vi.mock('openai', () => ({
OpenAI: vi.fn().mockImplementation(() => ({
embeddings: {
create: vi.fn().mockResolvedValue({
data: [{ embedding: new Array(768).fill(0.1) }],
}),
},
})),
}));
// Mock environment variables
vi.stubEnv('FIREWORKS_API_KEY', 'test-api-key');
describe('Agentic RAG System', () => {
beforeEach(() => {
vi.clearAllMocks();
});
it('should analyze queries correctly', async () => {
// Test factual query
const factualResult = await agenticRAG({
action: 'analyze_query',
query: 'What is artificial intelligence?',
collection_name: 'family_domestic',
});
expect(factualResult.status).toBe('success');
expect(factualResult.data.needsRetrieval).toBe(true);
expect(factualResult.data.queryType).toBe('factual');
// Test conversational query with multiple conversational keywords
const conversationalResult = await agenticRAG({
action: 'analyze_query',
query: 'Hello, how are you doing today?',
collection_name: 'family_domestic',
});
expect(conversationalResult.status).toBe('success');
expect(conversationalResult.data.needsRetrieval).toBe(false);
expect(conversationalResult.data.queryType).toBe('conversational');
// Test creative query with multiple creative keywords
const creativeResult = await agenticRAG({
action: 'analyze_query',
query: 'Write a story and compose a poem',
collection_name: 'family_domestic',
});
expect(creativeResult.status).toBe('success');
expect(creativeResult.data.needsRetrieval).toBe(false);
expect(creativeResult.data.queryType).toBe('creative');
});
it('should search knowledge base for factual queries', async () => {
const result = await agenticRAG({
action: 'search_knowledge',
query: 'What is machine learning?',
collection_name: 'family_domestic',
top_k: 2,
similarity_threshold: 0.1,
});
expect(result.status).toBe('success');
expect(result.context).toBeDefined();
expect(Array.isArray(result.context)).toBe(true);
expect(result.data.retrieved_documents).toBeDefined();
expect(result.data.analysis.needsRetrieval).toBe(true);
});
it('should not search for conversational queries', async () => {
const result = await agenticRAG({
action: 'search_knowledge',
query: 'Hello there! How are you?',
collection_name: 'family_domestic',
});
expect(result.status).toBe('success');
expect(result.data.analysis.needsRetrieval).toBe(false);
expect(result.data.retrieved_documents).toHaveLength(0);
});
it('should store documents successfully', async () => {
const result = await agenticRAG({
action: 'store_document',
document: {
id: 'test-doc-1',
content: 'This is a test document about neural networks and deep learning.',
metadata: { category: 'AI', author: 'Test Author' },
},
collection_name: 'family_domestic',
});
expect(result.status).toBe('success');
expect(result.data.document_id).toBe('test-doc-1');
expect(result.data.content_length).toBeGreaterThan(0);
});
it('should get context for factual queries', async () => {
const result = await agenticRAG({
action: 'get_context',
query: 'Tell me about vector databases',
collection_name: 'family_domestic',
top_k: 2,
});
expect(result.status).toBe('success');
expect(result.data.analysis.needsRetrieval).toBe(true);
expect(result.context).toBeDefined();
expect(result.data.context_summary).toBeDefined();
});
it('should handle semantic search', async () => {
const result = await agenticRAG({
action: 'semantic_search',
query: 'artificial intelligence concepts',
collection_name: 'family_domestic',
top_k: 3,
});
expect(result.status).toBe('success');
expect(result.data.results).toBeDefined();
expect(Array.isArray(result.data.results)).toBe(true);
});
it('should list collections', async () => {
const result = await agenticRAG({
action: 'list_collections',
collection_name: 'family_domestic',
});
expect(result.status).toBe('success');
expect(result.message).toContain('family_domestic');
});
it('should handle errors gracefully', async () => {
const result = await agenticRAG({
action: 'analyze_query',
collection_name: 'family_domestic',
// Missing query parameter
});
expect(result.status).toBe('error');
expect(result.message).toContain('Query is required');
});
it('should handle invalid actions', async () => {
const result = await agenticRAG({
action: 'invalid_action',
collection_name: 'family_domestic',
});
expect(result.status).toBe('error');
expect(result.message).toContain('Invalid action');
});
it('should have correct tool definition structure', () => {
expect(AgenticRAGTools.type).toBe('function');
expect(AgenticRAGTools.function.name).toBe('agentic_rag');
expect(AgenticRAGTools.function.description).toBeDefined();
expect(AgenticRAGTools.function.parameters.type).toBe('object');
expect(AgenticRAGTools.function.parameters.properties.action).toBeDefined();
expect(AgenticRAGTools.function.parameters.required).toContain('action');
expect(AgenticRAGTools.function.parameters.required).toContain('collection_name');
});
it('should demonstrate intelligent retrieval decision making', async () => {
// Test various query types to show intelligent decision making
const queries = [
{ query: 'What is AI?', expectedRetrieval: true },
{ query: 'Hello world how are you', expectedRetrieval: false },
{ query: 'Write a poem and create a story', expectedRetrieval: false },
{ query: 'Explain machine learning', expectedRetrieval: true },
{ query: 'How are you doing today?', expectedRetrieval: true },
{ query: 'Tell me about neural networks', expectedRetrieval: true },
];
for (const testCase of queries) {
const result = await agenticRAG({
action: 'search_knowledge',
query: testCase.query,
collection_name: 'family_domestic',
});
expect(result.status).toBe('success');
expect(result.data.analysis.needsRetrieval).toBe(testCase.expectedRetrieval);
console.log(
`[DEBUG_LOG] Query: "${testCase.query}" - Retrieval needed: ${result.data.analysis.needsRetrieval}`,
);
}
});
it('should filter results by similarity threshold', async () => {
const result = await agenticRAG({
action: 'search_knowledge',
query: 'What is machine learning?',
collection_name: 'family_domestic',
similarity_threshold: 0.8, // High threshold
});
expect(result.status).toBe('success');
if (result.data.analysis.needsRetrieval) {
// Should only return results above threshold
result.data.retrieved_documents.forEach((doc: any) => {
expect(doc.score).toBeGreaterThanOrEqual(0.8);
});
}
});
it('should handle context window limits', async () => {
const result = await agenticRAG({
action: 'get_context',
query: 'Tell me about artificial intelligence',
collection_name: 'family_domestic',
context_window: 1000,
});
expect(result.status).toBe('success');
if (result.data.analysis.needsRetrieval && result.data.context_summary) {
// Context should respect the window limit (approximate check)
expect(result.data.context_summary.length).toBeLessThanOrEqual(2000); // Allow some flexibility
}
});
});

View File

@@ -1,530 +0,0 @@
import { MilvusClient, DataType } from '@zilliz/milvus2-sdk-node';
import { OpenAI } from 'openai';
import { ProviderRepository } from '../providers/_ProviderRepository.ts';
/**
* Configuration for the Agentic RAG system
*/
export interface AgenticRAGConfig {
milvusAddress?: string;
collectionName?: string;
embeddingDimension?: number;
topK?: number;
similarityThreshold?: number;
}
/**
* Result structure for Agentic RAG operations
*/
export interface AgenticRAGResult {
message: string;
status: 'success' | 'error';
data?: any;
context?: string[];
relevanceScore?: number;
}
/**
* Document structure for knowledge base
*/
export interface Document {
id: string;
content: string;
metadata?: Record<string, any>;
embedding?: number[];
}
/**
* Agentic RAG Tools for intelligent retrieval-augmented generation
* This system makes intelligent decisions about when and how to retrieve information
*/
export const AgenticRAGTools = {
type: 'function',
function: {
name: 'agentic_rag',
description:
'Intelligent retrieval-augmented generation system that can store documents, search knowledge base, and provide contextual information based on user queries. The system intelligently decides when retrieval is needed.',
parameters: {
type: 'object',
properties: {
action: {
type: 'string',
enum: [
'list_collections',
'report_status',
'semantic_search',
'search_knowledge',
'analyze_query',
'get_context',
],
description: 'Action to perform with the agentic RAG system.',
},
query: {
type: 'string',
description: 'User query or search term for knowledge retrieval.',
},
// document: {
// type: 'object',
// properties: {
// content: { type: 'string', description: 'Document content to store' },
// metadata: { type: 'object', description: 'Additional metadata for the document' },
// id: { type: 'string', description: 'Unique identifier for the document' },
// },
// description: 'Document to store in the knowledge base.',
// },
collection_name: {
type: 'string',
// todo: make this fancy w/ dynamic collection
enum: [
'business_corporate',
'civil_procedure',
'criminal_justice',
'education_professions',
'environmental_infrastructure',
'family_domestic',
'foundational_law',
'government_administration',
'health_social_services',
'miscellaneous',
'property_real_estate',
'special_documents',
'taxation_finance',
'transportation_motor_vehicles',
],
description: 'Name of the collection to work with.',
},
top_k: {
type: 'number',
description: 'Number of similar documents to retrieve (default: 5).',
},
similarity_threshold: {
type: 'number',
description: 'Minimum similarity score for relevant results (0-1, default: 0.7).',
},
context_window: {
type: 'number',
description: 'Maximum number of context tokens to include (default: 2000).',
},
},
required: ['action', 'collection_name'],
additionalProperties: false,
},
strict: true,
},
};
/**
* Default configuration for the Agentic RAG system
*/
const DEFAULT_CONFIG: AgenticRAGConfig = {
milvusAddress: 'localhost:19530',
collectionName: 'family_domestic',
embeddingDimension: 768,
topK: 5,
similarityThreshold: 0.5,
};
/**
* Simple embedding function using a mock implementation
* In production, this should use a real embedding service like OpenAI, Cohere, etc.
*/
async function generateEmbedding(text: string): Promise<number[] | undefined> {
const embeddingsClient = new OpenAI({
apiKey: process.env.FIREWORKS_API_KEY,
baseURL: ProviderRepository.OPENAI_COMPAT_ENDPOINTS.fireworks,
}).embeddings;
const embeddings = await embeddingsClient.create({
input: [text],
model: 'nomic-ai/nomic-embed-text-v1.5',
dimensions: 768,
});
return embeddings.data.at(0)?.embedding;
}
/**
* Analyze query to determine if retrieval is needed
*/
function analyzeQueryForRetrieval(query: string): {
needsRetrieval: boolean;
confidence: number;
reasoning: string;
queryType: 'factual' | 'conversational' | 'creative' | 'analytical';
} {
const lowerQuery = query.toLowerCase();
// Keywords that suggest factual information is needed
const factualKeywords = [
'what is',
'who is',
'when did',
'where is',
'how does',
'explain',
'define',
'describe',
'tell me about',
'information about',
'details on',
'facts about',
'history of',
'background on',
];
// Keywords that suggest conversational/creative responses
const conversationalKeywords = [
'hello',
'hi',
'how are you',
'thank you',
'please help',
'i think',
'in my opinion',
'what do you think',
'can you help',
];
// Keywords that suggest creative tasks
const creativeKeywords = [
'write a',
'create a',
'generate',
'compose',
'draft',
'story',
'poem',
'essay',
'letter',
'email',
];
let factualScore = 0;
let conversationalScore = 0;
let creativeScore = 0;
factualKeywords.forEach(keyword => {
if (lowerQuery.includes(keyword)) factualScore += 1;
});
conversationalKeywords.forEach(keyword => {
if (lowerQuery.includes(keyword)) conversationalScore += 1;
});
creativeKeywords.forEach(keyword => {
if (lowerQuery.includes(keyword)) creativeScore += 1;
});
// Determine query type and retrieval need
if (factualScore > conversationalScore && factualScore > creativeScore) {
return {
needsRetrieval: true,
confidence: Math.min(factualScore * 0.3, 0.9),
reasoning:
'Query appears to be asking for factual information that may benefit from knowledge retrieval.',
queryType: 'factual',
};
} else if (creativeScore > conversationalScore && creativeScore > 1) {
// Only skip retrieval for clearly creative tasks with multiple creative keywords
return {
needsRetrieval: false,
confidence: 0.8,
reasoning: 'Query appears to be requesting creative content generation.',
queryType: 'creative',
};
} else if (conversationalScore > 1 && conversationalScore > factualScore) {
// Only skip retrieval for clearly conversational queries with multiple conversational keywords
return {
needsRetrieval: false,
confidence: 0.7,
reasoning: 'Query appears to be conversational in nature.',
queryType: 'conversational',
};
} else {
// Default to retrieval for most cases to ensure comprehensive responses
return {
needsRetrieval: true,
confidence: 0.8,
reasoning: 'Defaulting to retrieval to provide comprehensive and accurate information.',
queryType: 'analytical',
};
}
}
/**
* Main Agentic RAG function that handles intelligent retrieval decisions
*/
export async function agenticRAG(args: {
action: string;
query?: string;
document?: Document;
collection_name?: string;
top_k?: number;
similarity_threshold?: number;
context_window?: number;
user_confirmed?: boolean;
}): Promise<AgenticRAGResult> {
const config = { ...DEFAULT_CONFIG };
const collectionName = args.collection_name || config.collectionName!;
const topK = args.top_k || config.topK!;
const similarityThreshold = args.similarity_threshold || config.similarityThreshold!;
const milvusClient = new MilvusClient({ address: config.milvusAddress! });
try {
switch (args.action) {
case 'analyze_query':
if (!args.query) {
return { status: 'error', message: 'Query is required for analysis.' };
}
// eslint-disable-next-line no-case-declarations
const analysis = analyzeQueryForRetrieval(args.query);
return {
status: 'success',
message: `Query analysis complete. Retrieval ${analysis.needsRetrieval ? 'recommended' : 'not needed'}.`,
data: analysis,
};
case 'list_collections':
// eslint-disable-next-line no-case-declarations
const { collection_names } = (await milvusClient.listCollections()) as any as {
collection_names: string[];
};
return {
status: 'success',
message: JSON.stringify(collection_names),
};
case 'search_knowledge':
if (!args.query) {
return { status: 'error', message: 'Query is required for knowledge search.' };
}
// First, analyze if retrieval is needed
// eslint-disable-next-line no-case-declarations
const queryAnalysis = analyzeQueryForRetrieval(args.query);
if (!queryAnalysis.needsRetrieval) {
return {
status: 'success',
message: 'Query analysis suggests retrieval is not needed for this type of query.',
data: {
analysis: queryAnalysis,
retrieved_documents: [],
context: [],
},
};
}
// Generate embedding for the query
// eslint-disable-next-line no-case-declarations
const queryEmbedding = await generateEmbedding(args.query);
// Search for similar documents
// eslint-disable-next-line no-case-declarations
const searchResult = await milvusClient.search({
collection_name: collectionName,
vector: queryEmbedding,
topk: topK,
params: { nprobe: 8 },
output_fields: ['content', 'metadata'],
});
// Filter results by similarity threshold
// eslint-disable-next-line no-case-declarations
const relevantResults = searchResult.results.filter(
(result: any) => result.score >= similarityThreshold,
);
// eslint-disable-next-line no-case-declarations
const contextDocuments = relevantResults.map((result: any) => ({
content: result.content,
score: result.score,
metadata: result.metadata,
}));
return {
status: 'success',
message: `Found ${relevantResults.length} relevant documents for query.`,
data: {
analysis: queryAnalysis,
retrieved_documents: contextDocuments,
context: contextDocuments.map((doc: any) => doc.content),
},
context: contextDocuments.map((doc: any) => doc.content),
relevanceScore: relevantResults.length > 0 ? relevantResults.at(0)?.score : 0,
};
case 'store_document':
if (!args.document || !args.document.content) {
return { status: 'error', message: 'Document with content is required for storage.' };
}
// Generate embedding for the document
// eslint-disable-next-line no-case-declarations
const docEmbedding = await generateEmbedding(args.document.content);
// eslint-disable-next-line no-case-declarations
const docId =
args.document.id || `doc_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
// Store document in Milvus
await milvusClient.insert({
collection_name: collectionName,
fields_data: [
{ name: 'id', values: [docId] },
{ name: 'embedding', values: [docEmbedding] },
{ name: 'content', values: [args.document.content] },
{ name: 'metadata', values: [JSON.stringify(args.document.metadata || {})] },
],
});
return {
status: 'success',
message: `Document stored successfully with ID: ${docId}`,
data: { document_id: docId, content_length: args.document.content.length },
};
case 'manage_collection':
try {
// Check if collection exists
const collections = await milvusClient.listCollections();
const collectionExists =
collections.data.filter(c => c.name.includes(collectionName)).length > 0;
if (!collectionExists) {
// Create collection with proper schema for RAG
const collectionSchema = {
collection_name: collectionName,
fields: [
{
name: 'id',
type: DataType.VarChar,
params: { max_length: 100 },
is_primary_key: true,
},
{
name: 'embedding',
type: DataType.FloatVector,
params: { dim: config.embeddingDimension },
},
{ name: 'content', type: DataType.VarChar, params: { max_length: 65535 } },
{ name: 'metadata', type: DataType.VarChar, params: { max_length: 1000 } },
],
};
await milvusClient.createCollection(collectionSchema as any);
// Create index for efficient similarity search
await milvusClient.createIndex({
collection_name: collectionName,
field_name: 'embedding',
index_type: 'IVF_FLAT',
params: { nlist: 1024 },
metric_type: 'COSINE',
});
return {
status: 'success',
message: `Collection '${collectionName}' created successfully with RAG schema.`,
data: { collection_name: collectionName, action: 'created' },
};
} else {
return {
status: 'success',
message: `Collection '${collectionName}' already exists.`,
data: { collection_name: collectionName, action: 'exists' },
};
}
} catch (error: any) {
return {
status: 'error',
message: `Error managing collection: ${error.message}`,
};
}
case 'semantic_search':
if (!args.query) {
return { status: 'error', message: 'Query is required for semantic search.' };
}
// eslint-disable-next-line no-case-declarations
const semanticEmbedding = await generateEmbedding(args.query);
// eslint-disable-next-line no-case-declarations
const semanticResults = await milvusClient.search({
collection_name: collectionName,
vector: semanticEmbedding,
topk: topK,
params: { nprobe: 8 },
output_fields: ['content', 'metadata'],
});
return {
status: 'success',
message: `Semantic search completed. Found ${semanticResults.results.length} results.`,
data: {
results: semanticResults.results.map((result: any) => ({
content: result.content,
score: result.score,
metadata: JSON.parse(result.metadata || '{}'),
})),
},
};
case 'get_context':
if (!args.query) {
return { status: 'error', message: 'Query is required to get context.' };
}
// This is a comprehensive context retrieval that combines analysis and search
// eslint-disable-next-line no-case-declarations
const contextAnalysis = analyzeQueryForRetrieval(args.query);
if (contextAnalysis.needsRetrieval) {
const contextEmbedding = await generateEmbedding(args.query);
const contextSearch = await milvusClient.search({
collection_name: collectionName,
vector: contextEmbedding,
topk: topK,
params: { nprobe: 8 },
output_fields: ['content', 'metadata'],
});
const contextResults = contextSearch.results
.filter((result: any) => result.score >= similarityThreshold)
.map((result: any) => ({
content: result.content,
score: result.score,
metadata: JSON.parse(result.metadata || '{}'),
}));
return {
status: 'success',
message: `Context retrieved successfully. Found ${contextResults.length} relevant documents.`,
data: {
analysis: contextAnalysis,
context_documents: contextResults,
context_summary: contextResults.map((doc: any) => doc.content).join('\n\n'),
},
context: contextResults.map((doc: any) => doc.content),
};
} else {
return {
status: 'success',
message: 'No context retrieval needed for this query type.',
data: {
analysis: contextAnalysis,
context_documents: [],
context_summary: '',
},
};
}
default:
return { status: 'error', message: 'Invalid action specified.' };
}
} catch (error: any) {
return {
status: 'error',
message: `Integration error: ${error.message}`,
};
}
}

View File

@@ -1,21 +0,0 @@
// tools/basicValue.ts
export interface BasicValueResult {
value: string;
}
export const BasicValueTool = {
name: 'basicValue',
type: 'function',
description: 'Returns a basic value (timestamp-based) for testing',
parameters: {
type: 'object',
properties: {},
required: [],
},
function: async (): Promise<BasicValueResult> => {
// generate something obviously basic
const basic = `tool-called-${Date.now()}`;
console.log('[BasicValueTool] returning:', basic);
return { value: basic };
},
};

View File

@@ -1,25 +0,0 @@
export async function getWeather(latitude: any, longitude: any) {
const response = await fetch(
`https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m`,
);
const data = await response.json();
return data.current.temperature_2m;
}
export const WeatherTool = {
type: 'function',
function: {
name: 'get_weather',
description: 'Get current temperature for provided coordinates in celsius.',
parameters: {
type: 'object',
properties: {
latitude: { type: 'number' },
longitude: { type: 'number' },
},
required: ['latitude', 'longitude'],
additionalProperties: false,
},
strict: true,
},
};

View File

@@ -1,68 +0,0 @@
export interface ShipControlResult {
message: string;
status: 'success' | 'error';
data?: any;
}
/**
* A mock interface for controlling a ship.
*/
export const YachtpitTools = {
type: 'function',
description: 'Interface for controlling a ship: set speed, change heading, report status, etc.',
/**
* Mock implementation of a ship control command.
*/
function: {
name: 'ship_control',
parameters: {
type: 'object',
properties: {
action: {
type: 'string',
enum: ['set_speed', 'change_heading', 'report_status', 'stop'],
description: 'Action to perform on the ship.',
},
value: {
type: 'number',
description:
'Numeric value for the action, such as speed (knots) or heading (degrees). Only required for set_speed and change_heading.',
},
},
required: ['action'],
additionalProperties: false,
},
},
};
export function yachtpitAi(args: { action: string; value?: number }): Promise<ShipControlResult> {
switch (args.action) {
case 'set_speed':
if (typeof args.value !== 'number') {
return { status: 'error', message: 'Missing speed value.' };
}
return { status: 'success', message: `Speed set to ${args.value} knots.` };
case 'change_heading':
if (typeof args.value !== 'number') {
return { status: 'error', message: 'Missing heading value.' };
}
return { status: 'success', message: `Heading changed to ${args.value} degrees.` };
case 'report_status':
// Return a simulated ship status
return {
status: 'success',
message: 'Ship status reported.',
data: {
speed: 12,
heading: 87,
engine: 'nominal',
position: { lat: 42.35, lon: -70.88 },
},
};
case 'stop':
return { status: 'success', message: 'Ship stopped.' };
default:
return { status: 'error', message: 'Invalid action.' };
}
}

View File

@@ -8,8 +8,7 @@
"tests:coverage": "vitest run --coverage.enabled=true",
"generate:sitemap": "bun ./scripts/generate_sitemap.js open-gsio.seemueller.workers.dev",
"generate:robotstxt": "bun ./scripts/generate_robots_txt.js open-gsio.seemueller.workers.dev",
"generate:fonts": "cp -r ../../node_modules/katex/dist/fonts public/static",
"generate:pwa:assets": "test ! -f public/pwa-64x64.png && pwa-assets-generator --preset minimal-2023 public/logo.png || echo 'PWA assets already exist'"
"generate:fonts": "cp -r ../../node_modules/katex/dist/fonts public/static"
},
"exports": {
"./server/index.ts": {
@@ -18,31 +17,26 @@
}
},
"devDependencies": {
"@chakra-ui/icons": "^2.2.4",
"@open-gsio/env": "workspace:*",
"@open-gsio/scripts": "workspace:*",
"@chakra-ui/react": "^2.10.6",
"@cloudflare/workers-types": "^4.20241205.0",
"@emotion/react": "^11.13.5",
"@emotion/styled": "^11.13.5",
"@open-gsio/env": "workspace:*",
"@open-gsio/scripts": "workspace:*",
"@testing-library/jest-dom": "^6.4.2",
"@testing-library/react": "^16.3.0",
"@testing-library/user-event": "^14.5.2",
"@types/bun": "^1.2.17",
"@types/marked": "^6.0.0",
"@vite-pwa/assets-generator": "^1.0.0",
"@vitejs/plugin-react": "^4.3.4",
"@vitest/coverage-v8": "^3.1.4",
"@vitest/ui": "^3.1.4",
"bun": "^1.2.17",
"chokidar": "^4.0.1",
"framer-motion": "^11.13.1",
"framer-motion": "^12.18.1",
"isomorphic-dompurify": "^2.19.0",
"js-cookie": "^3.0.5",
"jsdom": "^24.0.0",
"katex": "^0.16.20",
"lucide-react": "^0.436.0",
"mapbox-gl": "^3.13.0",
"marked": "^15.0.4",
"marked-extended-latex": "^1.1.0",
"marked-footnote": "^1.2.4",
@@ -50,19 +44,20 @@
"mobx": "^6.13.5",
"mobx-react-lite": "^4.0.7",
"mobx-state-tree": "^6.0.1",
"moo": "^0.5.2",
"qrcode.react": "^4.1.0",
"react": "^19.1.0",
"react": "^18.3.1",
"react-dom": "^19.1.0",
"react-icons": "^5.4.0",
"react-map-gl": "^8.0.4",
"react-streaming": "^0.4.2",
"react-streaming": "^0.3.44",
"react-textarea-autosize": "^8.5.5",
"shiki": "^1.24.0",
"tslog": "^4.9.3",
"typescript": "^5.7.2",
"vike": "^0.4.235",
"vite": "^7.0.0",
"vite-plugin-pwa": "^1.0.1",
"vitest": "^3.1.4"
"vite-plugin-pwa": "^1.0.0",
"vitest": "^3.1.4",
"bun": "^1.2.17",
"@types/bun": "^1.2.17"
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 638 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 563 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 624 B

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 534 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 373 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 165 KiB

View File

@@ -0,0 +1,19 @@
{
"name": "",
"short_name": "",
"icons": [
{
"src": "/android-chrome-192x192.png",
"sizes": "192x192",
"type": "image/png"
},
{
"src": "/android-chrome-512x512.png",
"sizes": "512x512",
"type": "image/png"
}
],
"theme_color": "#fffff0",
"background_color": "#000000",
"display": "standalone"
}

View File

@@ -28,7 +28,7 @@ const Chat = observer(({ height, width }) => {
<GridItem
overflow="auto"
width="100%"
maxH="100vh"
maxH="100%"
ref={scrollRef}
// If there are attachments, use "100px". Otherwise, use "128px" on Android, "73px" elsewhere.
pb={isAndroid ? '128px' : '73px'}

View File

@@ -171,7 +171,7 @@ const InputMenu: React.FC<{ isDisabled?: boolean }> = observer(({ isDisabled })
bg="background.tertiary"
color="text.primary"
onClick={() => {
clientChatStore.reset();
clientChatStore.setActiveConversation('conversation:new');
onClose();
}}
_hover={{ bg: 'rgba(0, 0, 0, 0.05)' }}

View File

@@ -22,7 +22,7 @@ const ChatInput = observer(() => {
const [shouldFollow, setShouldFollow] = useState<boolean>(userOptionsStore.followModeEnabled);
const [couldFollow, setCouldFollow] = useState<boolean>(chatStore.isLoading);
const [inputWidth, setInputWidth] = useState<string>('40%');
const [inputWidth, setInputWidth] = useState<string>('50%');
useEffect(() => {
setShouldFollow(chatStore.isLoading && userOptionsStore.followModeEnabled);
@@ -64,10 +64,10 @@ const ChatInput = observer(() => {
};
const inputMaxWidth = useBreakpointValue(
{ base: '30rem', lg: '50rem', md: '80%', sm: '100vw' },
{ base: '50rem', lg: '50rem', md: '80%', sm: '100vw' },
{ ssr: true },
);
const inputMinWidth = useBreakpointValue({ lg: '40rem', md: '30rem' }, { ssr: true });
const inputMinWidth = useBreakpointValue({ lg: '40rem' }, { ssr: true });
useEffect(() => {
setInputWidth('100%');
@@ -75,7 +75,9 @@ const ChatInput = observer(() => {
return (
<Box
width={inputMinWidth}
width={inputWidth}
maxW={inputMaxWidth}
minWidth={inputMinWidth}
mx="auto"
p={2}
pl={2}

View File

@@ -1,4 +1,4 @@
import { Box, chakra, InputGroup, useBreakpointValue } from '@chakra-ui/react';
import { Box, chakra, InputGroup } from '@chakra-ui/react';
import { observer } from 'mobx-react-lite';
import React, { useEffect, useRef, useState } from 'react';
import AutoResize from 'react-textarea-autosize';
@@ -19,7 +19,7 @@ const InputTextArea: React.FC<InputTextAreaProps> = observer(
useEffect(() => {
if (value.length > 10) {
setHeightConstraint(parseInt(value));
setHeightConstraint();
}
}, [value]);
@@ -38,7 +38,6 @@ const InputTextArea: React.FC<InputTextAreaProps> = observer(
ref={inputRef}
value={value}
height={heightConstraint}
maxH={heightConstraint}
autoFocus
onChange={e => onChange(e.target.value)}
onKeyDown={onKeyDown}
@@ -50,13 +49,7 @@ const InputTextArea: React.FC<InputTextAreaProps> = observer(
borderRadius="20px"
border="none"
placeholder="Free my mind..."
_placeholder={{
color: 'gray.400',
textWrap: 'nowrap',
textOverflow: 'ellipsis',
overflow: 'hidden',
width: '90%',
}}
_placeholder={{ color: 'gray.400' }}
_focus={{
outline: 'none',
}}

View File

@@ -9,7 +9,7 @@ export function formatConversationMarkdown(messages: Instance<typeof IMessage>[]
if (message.role === 'user') {
return `**You**: ${message.content}`;
} else if (message.role === 'assistant') {
return `**open-gsio**: ${message.content}`;
return `**Geoff's AI**: ${message.content}`;
}
return '';
})

View File

@@ -51,7 +51,7 @@ const MessageBubble = observer(({ msg, scrollRef }) => {
const [isEditing, setIsEditing] = useState(false);
const [isHovered, setIsHovered] = useState(false);
const isUser = msg.role === 'user';
const senderName = isUser ? 'You' : 'open-gsio';
const senderName = isUser ? 'You' : "Geoff's AI";
const isLoading = !msg.content || !(msg.content.trim().length > 0);
const messageRef = useRef();

View File

@@ -104,7 +104,7 @@ describe('MessageBubble', () => {
it('should render assistant message correctly', () => {
render(<MessageBubble msg={mockAssistantMessage} scrollRef={mockScrollRef} />);
expect(screen.getByText('open-gsio')).toBeInTheDocument();
expect(screen.getByText("Geoff's AI")).toBeInTheDocument();
expect(screen.getByTestId('message-content')).toHaveTextContent('Assistant response');
});

View File

@@ -1,25 +0,0 @@
import React, { createContext, useContext, useState } from 'react';
type ComponentContextType = {
enabledComponent: string;
setEnabledComponent: (component: string) => void;
};
const ComponentContext = createContext<ComponentContextType>({
enabledComponent: '',
setEnabledComponent: () => {},
});
export const useComponent = () => useContext(ComponentContext);
export const ComponentProvider: React.FC<{ children: React.ReactNode }> = ({ children }) => {
const [enabledComponent, setEnabledComponent] = useState<string>('');
return (
<ComponentContext.Provider value={{ enabledComponent, setEnabledComponent }}>
{children}
</ComponentContext.Provider>
);
};
export default ComponentContext;

View File

@@ -1,7 +0,0 @@
import React, { useEffect, useState } from 'react';
function InstallButton() {
return <button onClick={handleInstall}>Install App</button>;
}
export default InstallButton;

View File

@@ -1,61 +0,0 @@
import { IconButton } from '@chakra-ui/react';
import { HardDriveDownload } from 'lucide-react';
import React, { useEffect, useState } from 'react';
import { toolbarButtonZIndex } from '../toolbar/Toolbar.tsx';
function InstallButton() {
const [deferredPrompt, setDeferredPrompt] = useState(null);
const [isInstalled, setIsInstalled] = useState(false);
useEffect(() => {
const handleBeforeInstallPrompt = e => {
// Prevent the default prompt
e.preventDefault();
setDeferredPrompt(e);
};
window.addEventListener('beforeinstallprompt', handleBeforeInstallPrompt);
return () => {
window.removeEventListener('beforeinstallprompt', handleBeforeInstallPrompt);
};
}, []);
const handleInstall = () => {
if (deferredPrompt) {
deferredPrompt.prompt();
deferredPrompt.userChoice.then(choiceResult => {
if (choiceResult.outcome === 'accepted') {
console.log('User accepted the installation prompt');
} else {
console.log('User dismissed the installation prompt');
}
});
setDeferredPrompt(null);
}
};
return (
<IconButton
aria-label="Install App"
title="Install App"
icon={<HardDriveDownload />}
size="md"
bg="transparent"
stroke="text.accent"
color="text.accent"
onClick={handleInstall}
_hover={{
bg: 'transparent',
svg: {
stroke: 'accent.secondary',
transition: 'stroke 0.3s ease-in-out',
},
}}
zIndex={toolbarButtonZIndex}
/>
);
}
export default InstallButton;

View File

@@ -1,73 +0,0 @@
import { Box } from '@chakra-ui/react';
import React, { useEffect, useState } from 'react';
import { useComponent } from '../contexts/ComponentContext.tsx';
// import { BevyScene } from './BevyScene.tsx';
import Tweakbox from './Tweakbox.tsx';
export const LandingComponent: React.FC = () => {
const [intensity, setIntensity] = useState(0.99);
const [mapActive, setMapActive] = useState(false);
const [aiActive, setAiActive] = useState(true);
const component = useComponent();
const { setEnabledComponent } = component;
useEffect(() => {
if (mapActive) {
setEnabledComponent('gpsmap');
}
if (aiActive) {
setEnabledComponent('ai');
}
}, []);
return (
<Box as="section" bg="background.primary" overflow="hidden">
<Box position="fixed" right={0} maxWidth="300px" minWidth="200px" zIndex={1000}>
<Tweakbox
sliders={{
intensity: {
value: intensity,
onChange: setIntensity,
label: 'Brightness',
min: 0.01,
max: 0.99,
step: 0.01,
ariaLabel: 'effect-intensity',
},
}}
switches={{
// GpsMap: {
// value: mapActive,
// onChange(enabled) {
// if (enabled) {
// setEnabledComponent('gpsmap');
// setAiActive(false);
// } else {
// setEnabledComponent('');
// }
// setMapActive(enabled);
// },
// label: 'GPS',
// },
AI: {
value: aiActive,
onChange(enabled) {
if (enabled) {
setEnabledComponent('ai');
setMapActive(false);
} else {
setEnabledComponent('');
}
setAiActive(enabled);
},
label: 'AI',
},
}}
/>
</Box>
</Box>
);
};

View File

@@ -1,63 +0,0 @@
import ReactMap from 'react-map-gl/mapbox'; // ↔ v5+ uses this import path
import 'mapbox-gl/dist/mapbox-gl.css';
import { Box, HStack, Button, Input, Center } from '@chakra-ui/react';
import { useState, useEffect, useCallback } from 'react';
import MapNext from './MapNext.tsx';
// Types for bevy_flurx_ipc communication
interface GpsPosition {
latitude: number;
longitude: number;
zoom: number;
}
interface VesselStatus {
latitude: number;
longitude: number;
heading: number;
speed: number;
}
interface MapViewParams {
latitude: number;
longitude: number;
zoom: number;
}
interface AuthParams {
authenticated: boolean;
token: string | null;
}
// public key
const key =
'cGsuZXlKMUlqb2laMlZ2Wm1aelpXVWlMQ0poSWpvaVkycDFOalo0YkdWNk1EUTRjRE41YjJnNFp6VjNNelp6YXlKOS56LUtzS1l0X3VGUGdCSDYwQUFBNFNn';
function Map(props: { visible: boolean }) {
return (
/* Full-screen wrapper — fills the viewport and becomes the positioning context */
<Box position={'absolute'} top={0} w="100vw" h={'100vh'} overflow="hidden">
{/* Button bar — absolutely positioned inside the wrapper */}
<MapNext mapboxPublicKey={atob(key)} />
{/*<Map*/}
{/* mapboxAccessToken={atob(key)}*/}
{/* initialViewState={mapView}*/}
{/* onMove={handleMapViewChange}*/}
{/* mapStyle="mapbox://styles/mapbox/dark-v11"*/}
{/* reuseMaps*/}
{/* attributionControl={false}*/}
{/* style={{width: '100%', height: '100%'}} // let the wrapper dictate size*/}
{/*>*/}
{/* /!*{vesselPosition && (*!/*/}
{/* /!* <Source id="vessel-data" type="geojson" data={vesselGeojson}>*!/*/}
{/* /!* <Layer {...vesselLayerStyle} />*!/*/}
{/* /!* </Source>*!/*/}
{/* /!*)}*!/*/}
{/*</Map>*/}
</Box>
);
}
export default Map;

View File

@@ -1,172 +0,0 @@
import { Box } from '@chakra-ui/react';
import { useCallback, useEffect, useMemo, useState } from 'react';
import Map, {
FullscreenControl,
GeolocateControl,
Marker,
NavigationControl,
Popup,
ScaleControl,
} from 'react-map-gl/mapbox';
import PORTS from './nautical-base-data.json';
import Pin from './pin';
export default function MapNext(props: any = { mapboxPublicKey: '' } as any) {
const [popupInfo, setPopupInfo] = useState(null);
const [isSearchOpen, setIsSearchOpen] = useState(false);
const [isTokenLoading, setIsTokenLoading] = useState(false);
const [authenticated, setAuthenticated] = useState(false);
useEffect(() => {
setAuthenticated(true);
setIsTokenLoading(false);
}, []);
const [mapView, setMapView] = useState({
longitude: -122.4,
latitude: 37.8,
zoom: 14,
});
const handleNavigationClick = useCallback(async () => {
console.log('handling navigation in map');
}, []);
const handleSearchClick = useCallback(async () => {
console.log('handling click search in map');
}, []);
const handleMapViewChange = useCallback(async (evt: any) => {
const { longitude, latitude, zoom } = evt.viewState;
setMapView({ longitude, latitude, zoom });
}, []);
const pins = useMemo(
() =>
PORTS.map((city, index) => (
<Marker
key={`marker-${index}`}
longitude={city.longitude}
latitude={city.latitude}
anchor="bottom"
onClick={e => {
// If we let the click event propagates to the map, it will immediately close the popup
// with `closeOnClick: true`
e.originalEvent.stopPropagation();
/*
src/MapNext.tsx:34:38 - error TS2345: Argument of type '{ city: string; population: string; image: string; state: string; latitude: number; longitude: number; }' is not assignable to parameter of type 'SetStateAction<null>'.
Type '{ city: string; population: string; image: string; state: string; latitude: number; longitude: number; }' provides no match for the signature '(prevState: null): null'.
*/
// @ts-ignore
setPopupInfo(city);
}}
>
<Pin />
</Marker>
)),
[],
);
return (
<Box justifySelf={'right'} w={'100%'}>
{/*<HStack position="absolute" top={4} right={4} zIndex={1}>*/}
{/* <Box display="flex" alignItems="center">*/}
{/* <Button colorScheme="teal" size="sm" variant="solid" onClick={handleSearchClick} mr={2}>*/}
{/* Search*/}
{/* </Button>*/}
{/* {isSearchOpen && (*/}
{/* <Box*/}
{/* w="200px"*/}
{/* transition="all 0.3s"*/}
{/* transform={`translateX(${isSearchOpen ? '0' : '100%'})`}*/}
{/* opacity={isSearchOpen ? 1 : 0}*/}
{/* color="white"*/}
{/* >*/}
{/* <Input*/}
{/* placeholder="Search..."*/}
{/* size="sm"*/}
{/* _placeholder={{*/}
{/* color: '#d1cfcf',*/}
{/* }}*/}
{/* />*/}
{/* </Box>*/}
{/* )}*/}
{/* </Box>*/}
{/* <Button colorScheme="blue" size="sm" variant="solid" onClick={handleNavigationClick}>*/}
{/* Layer*/}
{/* </Button>*/}
{/*</HStack>*/}
<Map
initialViewState={{
latitude: 40,
longitude: -100,
zoom: 3.5,
bearing: 0,
pitch: 0,
}}
mapStyle="mapbox://styles/geoffsee/cmd1qz39x01ga01qv5acea02y"
attributionControl={false}
mapboxAccessToken={props.mapboxPublicKey}
style={{
position: 'absolute',
width: '100%',
// height: '50%',
bottom: 0,
top: 0,
left: 0,
right: 0,
}}
>
<GeolocateControl position="top-left" style={{ marginTop: '6rem' }} />
<FullscreenControl position="top-left" />
<NavigationControl position="top-left" />
<ScaleControl position="top-left" />
{pins}
{popupInfo && (
<Popup
anchor="top"
/*
src/MapNext.tsx:66:53 - error TS2339: Property 'longitude' does not exist on type 'never'.
66 longitude={Number(popupInfo.longitude)}
*/
// @ts-ignore
longitude={Number(popupInfo.longitude)}
/*
src/MapNext.tsx:67:52 - error TS2339: Property 'latitude' does not exist on type 'never'.
67 latitude={Number(popupInfo.latitude)}
~~~~~~~~
*/
// @ts-ignore
latitude={Number(popupInfo.latitude)}
onClose={() => setPopupInfo(null)}
>
<div style={{ color: 'black' }}>
{/*src/MapNext.tsx:71:40 - error TS2339: Property 'city' does not exist on type 'never'.
71 {popupInfo.city}, {popupInfo.state} |{' '}
~~~~*/}
{/*@ts-ignore*/}
{/*@ts-ignore*/}
{popupInfo.city},{popupInfo.state}
{/*@ts-ignore*/}
</div>
{/*@ts-ignore*/}
<img width="100%" src={popupInfo.image} />
<br />
<a
style={{ color: 'blue' }}
target="_new"
href={`http://en.wikipedia.org/w/index.php?title=Special:Search&search=${(popupInfo as any).city}, ${(popupInfo as any).state}`}
>
Wikipedia
</a>
</Popup>
)}
</Map>
</Box>
);
}

View File

@@ -1,124 +0,0 @@
import { useBreakpointValue, useTheme } from '@chakra-ui/react';
import React, { useEffect, useRef, useMemo } from 'react';
const MATRIX_CHARS =
'アイウエオカキクケコサシスセソタチツテトナニヌネハヒフヘホ0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';
interface MatrixRainProps {
speed?: number;
glow?: boolean;
intensity?: number;
visible?: boolean;
}
export const MatrixRain: React.FC<MatrixRainProps> = ({
speed = 1,
glow = false,
intensity = 1,
visible,
}) => {
const fontSize = useBreakpointValue({ base: 14, md: 18, lg: 22 }) ?? 14;
const theme = useTheme();
const canvasRef = useRef<HTMLCanvasElement | null>(null);
const animationRef = useRef<number | null>(null);
const dropsRef = useRef<number[]>([]);
const columnsRef = useRef<number>(0);
const colors = useMemo(
() => ({
background: theme.colors.background.primary,
textAccent: theme.colors.text.accent,
}),
[theme.colors.background.primary, theme.colors.text.accent],
);
const colorsRef = useRef(colors);
colorsRef.current = colors;
useEffect(() => {
const canvas = canvasRef.current;
if (!canvas) return;
const ctx = canvas.getContext('2d');
if (!ctx) return;
const resize = () => {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
const newColumns = Math.floor(canvas.width / fontSize);
if (newColumns !== columnsRef.current) {
columnsRef.current = newColumns;
const newDrops: number[] = [];
for (let i = 0; i < newColumns; i++) {
if (i < dropsRef.current.length) {
newDrops[i] = dropsRef.current[i];
} else {
newDrops[i] = Math.random() * (canvas.height / fontSize);
}
}
dropsRef.current = newDrops;
}
};
resize();
window.addEventListener('resize', resize);
if (dropsRef.current.length === 0) {
const columns = Math.floor(canvas.width / fontSize);
columnsRef.current = columns;
for (let i = 0; i < columns; i++) {
dropsRef.current[i] = Math.random() * (canvas.height / fontSize);
}
}
const draw = () => {
if (!ctx || !canvas) return;
const currentColors = colorsRef.current;
ctx.fillStyle = currentColors.background;
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.font = `${fontSize}px monospace`;
for (let i = 0; i < dropsRef.current.length; i++) {
const text = MATRIX_CHARS[Math.floor(Math.random() * MATRIX_CHARS.length)];
const x = i * fontSize;
const y = dropsRef.current[i] * fontSize;
ctx.fillStyle = currentColors.textAccent;
if (glow) {
ctx.shadowBlur = 10;
ctx.shadowColor = currentColors.textAccent;
}
ctx.fillText(text, x, y);
if (y > canvas.height) {
dropsRef.current[i] = -Math.random() * 5;
} else {
dropsRef.current[i] += (0.1 + Math.random() * 0.5) * speed * intensity;
}
}
animationRef.current = requestAnimationFrame(draw);
};
animationRef.current = requestAnimationFrame(draw);
return () => {
window.removeEventListener('resize', resize);
if (animationRef.current) {
cancelAnimationFrame(animationRef.current);
}
};
}, [fontSize, speed, glow, intensity, visible]);
return (
<canvas
ref={canvasRef}
style={{ display: visible ? 'block' : 'none', pointerEvents: 'none' }}
/>
);
};

View File

@@ -1,162 +0,0 @@
import { Box, useTheme } from '@chakra-ui/react';
import React, { useEffect, useRef } from 'react';
interface ParticlesProps {
speed: number;
intensity: number;
particles: boolean;
glow: boolean;
visible?: boolean;
}
interface Particle {
x: number;
y: number;
vx: number;
vy: number;
size: number;
}
const Particles: React.FC<ParticlesProps> = ({ speed, intensity, glow, visible }) => {
const canvasRef = useRef<HTMLCanvasElement>(null);
const particlesRef = useRef<Particle[]>([]);
const animationFrameRef = useRef<number | undefined>(undefined);
const theme = useTheme();
// Helper function to create a single particle with proper canvas dimensions
const createParticle = (canvas: HTMLCanvasElement): Particle => ({
x: Math.random() * canvas.parentElement!.getBoundingClientRect().width,
y: Math.random() * canvas.parentElement!.getBoundingClientRect().height,
vx: (Math.random() - 0.5) * speed,
vy: (Math.random() - 0.5) * speed,
size: Math.random() * 3 + 1,
});
// Main animation effect
useEffect(() => {
if (!visible) {
if (animationFrameRef.current) {
cancelAnimationFrame(animationFrameRef.current);
animationFrameRef.current = undefined;
}
particlesRef.current = []; // Clear particles when disabled
return;
}
const canvas = canvasRef.current;
if (!canvas) return;
const ctx = canvas.getContext('2d');
if (!ctx) return;
const resizeCanvas = () => {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
// Reposition existing particles that are outside new bounds
particlesRef.current.forEach(particle => {
if (particle.x > canvas.width) particle.x = Math.random() * canvas.width;
if (particle.y > canvas.height) particle.y = Math.random() * canvas.height;
});
};
const ensureParticleCount = () => {
const targetCount = Math.floor(intensity * 100);
const currentCount = particlesRef.current.length;
if (currentCount < targetCount) {
// Add new particles
const newParticles = Array.from({ length: targetCount - currentCount }, () =>
createParticle(canvas),
);
particlesRef.current = [...particlesRef.current, ...newParticles];
} else if (currentCount > targetCount) {
// Remove excess particles
particlesRef.current = particlesRef.current.slice(0, targetCount);
}
};
const updateParticles = () => {
particlesRef.current.forEach(particle => {
particle.x += particle.vx;
particle.y += particle.vy;
if (particle.x < 0) particle.x = canvas.width;
if (particle.x > canvas.width) particle.x = 0;
if (particle.y < 0) particle.y = canvas.height;
if (particle.y > canvas.height) particle.y = 0;
});
};
const drawParticles = () => {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = theme.colors.text.accent;
ctx.globalCompositeOperation = 'lighter';
if (glow) {
ctx.shadowBlur = 10;
ctx.shadowColor = 'white';
} else {
ctx.shadowBlur = 0;
}
particlesRef.current.forEach(particle => {
ctx.beginPath();
ctx.arc(particle.x, particle.y, particle.size, 0, Math.PI * 2);
ctx.fill();
});
};
const animate = () => {
updateParticles();
drawParticles();
animationFrameRef.current = requestAnimationFrame(animate);
};
const handleResize = () => {
resizeCanvas();
};
window.addEventListener('resize', handleResize);
resizeCanvas(); // Set canvas size first
ensureParticleCount(); // Then create particles with proper dimensions
animate();
return () => {
window.removeEventListener('resize', handleResize);
if (animationFrameRef.current) {
cancelAnimationFrame(animationFrameRef.current);
animationFrameRef.current = undefined;
}
};
}, [visible, intensity, speed, glow, theme.colors.text.accent]);
// Separate effect for speed changes - update existing particle velocities
useEffect(() => {
if (!visible) return;
particlesRef.current.forEach(particle => {
const currentSpeed = Math.sqrt(particle.vx * particle.vx + particle.vy * particle.vy);
if (currentSpeed > 0) {
const normalizedVx = particle.vx / currentSpeed;
const normalizedVy = particle.vy / currentSpeed;
particle.vx = normalizedVx * speed;
particle.vy = normalizedVy * speed;
} else {
particle.vx = (Math.random() - 0.5) * speed;
particle.vy = (Math.random() - 0.5) * speed;
}
});
}, [speed, visible]);
return (
<Box zIndex={0} pointerEvents={'none'}>
<canvas
ref={canvasRef}
style={{ display: visible ? 'block' : 'none', pointerEvents: 'none' }}
/>
</Box>
);
};
export default Particles;

View File

@@ -1,111 +0,0 @@
import {
Box,
Grid,
GridItem,
Heading,
Slider,
SliderTrack,
SliderFilledTrack,
SliderThumb,
Text,
Switch,
Collapse,
IconButton,
} from '@chakra-ui/react';
import { ChevronDownIcon, ChevronUpIcon } from 'lucide-react';
import { observer } from 'mobx-react-lite';
import React, { useState } from 'react';
interface SliderControl {
value: number;
onChange: (value: number) => void;
label: string;
min: number;
max: number;
step: number;
ariaLabel: string;
}
interface SwitchControl {
value: boolean;
onChange: (enabled: boolean) => void;
label: string;
exclusive?: boolean;
}
interface TweakboxProps {
sliders: {
speed: SliderControl;
intensity: SliderControl;
};
switches: {
particles: SwitchControl;
glow: SwitchControl;
} & Record<string, SwitchControl>;
}
const Tweakbox = observer(({ sliders, switches }: TweakboxProps) => {
const [isCollapsed, setIsCollapsed] = useState(false);
return (
<Box display="flex" alignItems="flex-start">
<IconButton
aria-label="Toggle controls"
borderRadius="lg"
bg="whiteAlpha.300"
backdropFilter="blur(10px)"
boxShadow="xl"
icon={isCollapsed ? <ChevronUpIcon /> : <ChevronDownIcon />}
onClick={() => setIsCollapsed(!isCollapsed)}
size="sm"
marginRight={2}
/>
<Collapse in={!isCollapsed} style={{ width: '100%' }}>
<Box p={4} borderRadius="lg" bg="whiteAlpha.100" backdropFilter="blur(10px)" boxShadow="xl">
<Grid templateColumns="1fr" gap={4}>
<GridItem>
<Heading hidden={true} size="sm" mb={4} color="text.accent">
Controls
</Heading>
</GridItem>
{Object.keys(switches).map(key => {
return (
<GridItem key={key}>
<Text mb={2} color="text.accent">
{switches[key].label}
</Text>
<Switch
isChecked={switches[key].value}
onChange={e => switches[key].onChange(e.target.checked)}
/>
</GridItem>
);
})}
{Object.entries(sliders).map(([key, slider]) => (
<GridItem key={key}>
<Text mb={2} color="text.accent">
{slider.label}
</Text>
<Slider
aria-label={slider.ariaLabel}
value={slider.value}
min={slider.min}
step={slider.step}
max={slider.max}
onChange={slider.onChange}
>
<SliderTrack>
<SliderFilledTrack />
</SliderTrack>
<SliderThumb />
</Slider>
</GridItem>
))}
</Grid>
</Box>
</Collapse>
</Box>
);
});
export default Tweakbox;

View File

@@ -1,24 +0,0 @@
import * as React from 'react';
function ControlPanel() {
return (
<div className="control-panel">
<p>
Data source:{' '}
<a href="https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population">
Wikipedia
</a>
</p>
<div className="source-link">
<a
href="https://github.com/visgl/react-map-gl/tree/8.0-release/examples/mapbox/controls"
target="_new"
>
View Code
</a>
</div>
</div>
);
}
export default React.memo(ControlPanel);

View File

@@ -1,22 +0,0 @@
[
{"city":"New York","population":"8,335,897","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Above_Gotham.jpg/240px-Above_Gotham.jpg","state":"New York","latitude":40.7128,"longitude":-74.0060},
{"city":"Los Angeles","population":"3,822,238","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/5/57/LA_Skyline_Mountains2.jpg/240px-LA_Skyline_Mountains2.jpg","state":"California","latitude":34.0522,"longitude":-118.2437},
{"city":"Long Beach","population":"456,062","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Long_Beach_skyline_from_Shoreline_Village.jpg/240px-Long_Beach_skyline_from_Shoreline_Village.jpg","state":"California","latitude":33.7701,"longitude":-118.1937},
{"city":"Seattle","population":"749,256","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/3/36/SeattleI5Skyline.jpg/240px-SeattleI5Skyline.jpg","state":"Washington","latitude":47.6062,"longitude":-122.3321},
{"city":"San Francisco","population":"808,437","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/San_Francisco_skyline_from_Coit_Tower.jpg/240px-San_Francisco_skyline_from_Coit_Tower.jpg","state":"California","latitude":37.7749,"longitude":-122.4194},
{"city":"San Diego","population":"1,386,932","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/5/53/US_Navy_110604-N-NS602-574_Navy_and_Marine_Corps_personnel%2C_along_with_community_leaders_from_the_greater_San_Diego_area_come_together_to_commemora.jpg/240px-US_Navy_110604-N-NS602-574_Navy_and_Marine_Corps_personnel%2C_along_with_community_leaders_from_the_greater_San_Diego_area_come_together_to_commemora.jpg","state":"California","latitude":32.7157,"longitude":-117.1611},
{"city":"Norfolk","population":"235,089","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Norfolk_Skyline_from_Portsmouth.jpg/240px-Norfolk_Skyline_from_Portsmouth.jpg","state":"Virginia","latitude":36.8508,"longitude":-76.2859},
{"city":"Miami","population":"449,514","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Miami_skyline_201807_cat.jpg/240px-Miami_skyline_201807_cat.jpg","state":"Florida","latitude":25.7617,"longitude":-80.1918},
{"city":"Boston","population":"675,647","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Boston_skyline_and_Boston_Harbor.jpg/240px-Boston_skyline_and_Boston_Harbor.jpg","state":"Massachusetts","latitude":42.3601,"longitude":-71.0589},
{"city":"Baltimore","population":"585,708","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Baltimore_Skyline.jpg/240px-Baltimore_Skyline.jpg","state":"Maryland","latitude":39.2904,"longitude":-76.6122},
{"city":"Charleston","population":"151,612","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Charleston_SC_Skyline.jpg/240px-Charleston_SC_Skyline.jpg","state":"South Carolina","latitude":32.7765,"longitude":-79.9311},
{"city":"Savannah","population":"147,780","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Savannah_GA%2C_River_Street.jpg/240px-Savannah_GA%2C_River_Street.jpg","state":"Georgia","latitude":32.0809,"longitude":-81.0912},
{"city":"Tampa","population":"403,364","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Tampa_skyline_from_South%2C_2022.jpg/240px-Tampa_skyline_from_South%2C_2022.jpg","state":"Florida","latitude":27.9506,"longitude":-82.4572},
{"city":"Mobile","population":"187,041","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/Mobile_skyline_from_Mobile_River.jpg/240px-Mobile_skyline_from_Mobile_River.jpg","state":"Alabama","latitude":30.6954,"longitude":-88.0399},
{"city":"Anchorage","population":"288,121","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Anchorage_skyline_and_susitna.jpg/240px-Anchorage_skyline_and_susitna.jpg","state":"Alaska","latitude":61.2181,"longitude":-149.9003},
{"city":"Portland","population":"68,408","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/4/48/Portland_Maine_skyline.jpg/240px-Portland_Maine_skyline.jpg","state":"Maine","latitude":43.6591,"longitude":-70.2568},
{"city":"Honolulu","population":"349,547","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Honolulu_and_Diamond_Head.jpg/240px-Honolulu_and_Diamond_Head.jpg","state":"Hawaii","latitude":21.3069,"longitude":-157.8583},
{"city":"New Orleans","population":"376,971","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/New_Orleans_skyline_sunset_Dec_28_2021_PANO_DSC07177-07179.jpg/240px-New_Orleans_skyline_sunset_Dec_28_2021_PANO_DSC07177-07179.jpg","state":"Louisiana","latitude":29.9511,"longitude":-90.0715},
{"city":"Jacksonville","population":"971,319","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Skyline_of_Jacksonville_FL%2C_South_view_20160706_1.jpg/240px-Skyline_of_Jacksonville_FL%2C_South_view_20160706_1.jpg","state":"Florida","latitude":30.3322,"longitude":-81.6557},
{"city":"Houston","population":"2,302,878","image":"https://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Aerial_views_of_the_Houston%2C_Texas%2C_28005u.jpg/240px-Aerial_views_of_the_Houston%2C_Texas%2C_28005u.jpg","state":"Texas","latitude":29.7604,"longitude":-95.3698}
]

View File

@@ -1,21 +0,0 @@
import * as React from 'react';
const ICON = `M20.2,15.7L20.2,15.7c1.1-1.6,1.8-3.6,1.8-5.7c0-5.6-4.5-10-10-10S2,4.5,2,10c0,2,0.6,3.9,1.6,5.4c0,0.1,0.1,0.2,0.2,0.3
c0,0,0.1,0.1,0.1,0.2c0.2,0.3,0.4,0.6,0.7,0.9c2.6,3.1,7.4,7.6,7.4,7.6s4.8-4.5,7.4-7.5c0.2-0.3,0.5-0.6,0.7-0.9
C20.1,15.8,20.2,15.8,20.2,15.7z`;
const pinStyle = {
cursor: 'pointer',
fill: '#d00',
stroke: 'none'
};
function Pin({size = 20}) {
return (
<svg height={size} viewBox="0 0 24 24" style={pinStyle}>
<path d={ICON} />
</svg>
);
}
export default React.memo(Pin);

View File

@@ -2,7 +2,6 @@ import { Flex } from '@chakra-ui/react';
import React from 'react';
import BuiltWithButton from '../BuiltWithButton';
import InstallButton from '../install/InstallButton.tsx';
import GithubButton from './GithubButton';
import SupportThisSiteButton from './SupportThisSiteButton';
@@ -18,7 +17,6 @@ function ToolBar({ isMobile }) {
alignItems={isMobile ? 'flex-start' : 'flex-end'}
pb={4}
>
<InstallButton />
<SupportThisSiteButton />
<GithubButton />
<BuiltWithButton />

View File

@@ -6,7 +6,7 @@ import { useIsMobile } from '../components/contexts/MobileContext';
function Content({ children }) {
const isMobile = useIsMobile();
return (
<Flex flexDirection="column" w="100%" h="100vh">
<Flex flexDirection="column" w="100%" h="100vh" p={!isMobile ? 4 : 1}>
{children}
</Flex>
);

View File

@@ -10,16 +10,16 @@ export default function Hero() {
const isMobile = useIsMobile();
return (
<Box p={2} mt={2}>
<Box p={2}>
<Box>
<Heading
textAlign={isMobile ? 'left' : 'right'}
minWidth="90px"
maxWidth={'220px'}
color="text.accent"
// as="h3"
as="h3"
letterSpacing={'tight'}
size="xl"
size="lg"
>
{Routes[normalizePath(pageContext.urlPathname)]?.heroLabel}
</Heading>

View File

@@ -2,7 +2,6 @@ import { observer } from 'mobx-react-lite';
import React, { useEffect, useState } from 'react';
import { Chakra } from '../components/contexts/ChakraContext';
import ComponentContext, { ComponentProvider } from '../components/contexts/ComponentContext.tsx';
import { MobileProvider } from '../components/contexts/MobileContext';
import { PageContextProvider } from '../renderer/usePageContext';
import userOptionsStore from '../stores/UserOptionsStore';
@@ -14,7 +13,6 @@ export { Layout };
const Layout = observer(({ pageContext, children }) => {
const [activeTheme, setActiveTheme] = useState<string>('darknight');
const [enabledComponent, setEnabledComponent] = useState('gpsmap');
useEffect(() => {
if (userOptionsStore.theme !== activeTheme) {
@@ -49,9 +47,7 @@ const Layout = observer(({ pageContext, children }) => {
<PageContextProvider pageContext={pageContext}>
<MobileProvider>
<Chakra theme={getTheme(activeTheme)}>
<ComponentProvider>
<LayoutComponent>{children}</LayoutComponent>
</ComponentProvider>
<LayoutComponent>{children}</LayoutComponent>
</Chakra>
</MobileProvider>
</PageContextProvider>

View File

@@ -5,7 +5,7 @@ function NavItem({ path, children, color, onClick, as, cursor }) {
return (
<Box
as={as ?? 'a'}
href={path && path.length > 1 ? path : '/'}
href={path}
mb={2}
cursor={cursor}
// ml={5}

View File

@@ -1,4 +1,4 @@
import { Box, Collapse, Grid, GridItem, useBreakpointValue, useTheme } from '@chakra-ui/react';
import { Box, Collapse, Grid, GridItem, useBreakpointValue } from '@chakra-ui/react';
import { MenuIcon } from 'lucide-react';
import { observer } from 'mobx-react-lite';
import React, { useEffect } from 'react';
@@ -18,8 +18,6 @@ const Navigation = observer(({ children, routeRegistry }) => {
const currentPath = pageContext.urlPathname || '/';
const theme = useTheme();
const getTopValue = () => {
if (!isMobile) return undefined;
if (currentPath === '/') return 12;
@@ -42,7 +40,6 @@ const Navigation = observer(({ children, routeRegistry }) => {
return (
<Grid templateColumns="1fr" templateRows="auto 1fr">
{/*this is the menu button*/}
<GridItem
p={4}
position="fixed"
@@ -56,10 +53,9 @@ const Navigation = observer(({ children, routeRegistry }) => {
<GridItem>
<MenuIcon
cursor="pointer"
color="text.accent"
w={6}
h={6}
stroke={theme.colors.text.accent}
stroke={getTheme(userOptionsStore.theme).colors.text.accent}
onClick={() => {
switch (menuState.isOpen) {
case true:

View File

@@ -15,8 +15,8 @@ export default {
},
background: {
// primary: 'linear-gradient(360deg, #15171C 100%, #353A47 100%)',
primary: '#15171C',
primary: 'linear-gradient(360deg, #15171C 100%, #353A47 100%)',
secondary: '#1B1F26',
tertiary: '#1E1E2E',
},

View File

@@ -1,27 +1,4 @@
// runs before anything else
import { registerSW } from 'virtual:pwa-register';
import UserOptionsStore from '../stores/UserOptionsStore';
UserOptionsStore.initialize();
try {
const isLocal = window.location.hostname.includes('localhost');
if (!isLocal) {
if ('serviceWorker' in navigator) {
// && !/localhost/.test(window.location)) {
registerSW();
}
// navigator.serviceWorker.register('/service-worker.js');
} else {
(async () => {
await navigator.serviceWorker.getRegistrations().then(registrations => {
registrations.map(r => {
r.unregister();
});
});
})();
}
} catch (e) {
// fail silent
}

View File

@@ -1,10 +1,7 @@
import { Box } from '@chakra-ui/react';
import { Stack } from '@chakra-ui/react';
import React, { useEffect } from 'react';
import Chat from '../../components/chat/Chat.tsx';
import { useComponent } from '../../components/contexts/ComponentContext.tsx';
import { LandingComponent } from '../../components/landing-component/LandingComponent.tsx';
import ReactMap from '../../components/landing-component/Map.tsx';
import Chat from '../../components/chat/Chat';
import clientChatStore from '../../stores/ClientChatStore';
// renders "/"
@@ -19,29 +16,9 @@ export default function IndexPage() {
}
}, []);
const component = useComponent();
return (
<Box height="100%" width="100%">
<LandingComponent />
<Box
display={component.enabledComponent === 'ai' ? undefined : 'none'}
width="100%"
height="100%"
overflowY="scroll"
padding={'unset'}
>
<Chat />
</Box>
<Box
display={component.enabledComponent === 'gpsmap' ? undefined : 'none'}
width="100%"
height="100%"
padding={'unset'}
>
<ReactMap visible={component.enabledComponent === 'gpsmap'} />
</Box>
</Box>
<Stack direction="column" height="100%" width="100%" spacing={0}>
<Chat height="100%" width="100%" />
</Stack>
);
}

View File

@@ -28,9 +28,10 @@ const onRenderHtml: OnRenderHtmlAsync = async (pageContext): ReturnType<OnRender
<html data-theme="dark" lang="en">
<head>
<title>open-gsio</title>
<link rel="icon" href="/favicon.ico" sizes="48x48">
<link rel="icon" href="/favicon.svg" sizes="any" type="image/svg+xml">
<link rel="apple-touch-icon" href="/apple-touch-icon-180x180.png">
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link rel="manifest" href="/site.webmanifest">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta charset="UTF-8">
<meta name="description" content="Maker Site">

View File

@@ -1,5 +1,5 @@
export default {
'/': { sidebarLabel: 'Home', heroLabel: 'va-chat' },
'/': { sidebarLabel: 'Home', heroLabel: 'gsio' },
'/connect': { sidebarLabel: 'Connect', heroLabel: 'connect' },
'/privacy-policy': {
sidebarLabel: '',

View File

@@ -1,7 +1,7 @@
export const welcome_home_text = `
# open-gsio
# welcome!
---
Please enjoy [responsibly](https://centerforresponsible.ai/the-center)
<br/>
<br/>
`;

View File

@@ -7,15 +7,10 @@ import { VitePWA } from 'vite-plugin-pwa';
// eslint-disable-next-line import/no-unresolved
import { configDefaults } from 'vitest/config';
import { getColorThemes } from './src/layout/theme/color-themes';
const prebuildPlugin = () => ({
name: 'prebuild',
config(config, { command }) {
if (command === 'build') {
console.log('Generate PWA Assets -> public/');
child_process.execSync('bun generate:pwa:assets');
console.log('Generated Sitemap -> public/sitemap.xml');
child_process.execSync('bun generate:sitemap');
console.log('Generated Sitemap -> public/sitemap.xml');
child_process.execSync('bun run generate:robotstxt');
@@ -26,13 +21,6 @@ const prebuildPlugin = () => ({
},
});
// eslint-disable-next-line @typescript-eslint/no-require-imports
// const PROJECT_SOURCES_HASH = sha512Dir('./src');
//
// console.log({ PROJECT_SOURCES_HASH });
const buildId = crypto.randomUUID();
export default defineConfig(({ command }) => {
return {
mode: 'production',
@@ -43,62 +31,6 @@ export default defineConfig(({ command }) => {
prerender: true,
disableAutoFullBuild: false,
}),
VitePWA({
registerType: 'autoUpdate',
injectRegister: null,
minify: true,
disable: false,
filename: 'service-worker.js',
devOptions: {
enabled: false,
navigateFallback: 'index.html',
suppressWarnings: true,
type: 'module',
},
manifest: {
name: `open-gsio`,
short_name: 'open-gsio',
display: 'standalone',
description: `open-gsio client`,
theme_color: getColorThemes().at(0)?.colors.text.accent,
background_color: getColorThemes().at(0)?.colors.background.primary,
scope: '/',
start_url: '/',
icons: [
{
src: 'pwa-64x64.png',
sizes: '64x64',
type: 'image/png',
},
{
src: 'pwa-192x192.png',
sizes: '192x192',
type: 'image/png',
},
{
src: 'pwa-512x512.png',
sizes: '512x512',
type: 'image/png',
purpose: 'any',
},
{
src: 'maskable-icon-512x512.png',
sizes: '512x512',
type: 'image/png',
purpose: 'maskable',
},
],
},
workbox: {
globPatterns: ['**/*.{js,css,html,ico,png,svg,wasm}'],
navigateFallbackDenylist: [/^\/api\//],
maximumFileSizeToCacheInBytes: 25000000,
cacheId: buildId,
cleanupOutdatedCaches: true,
clientsClaim: true,
},
}),
// PWA plugin saves money on data transfer by caching assets on the client
/*
For safari, use this script in the console to unregister the service worker.
@@ -109,15 +41,22 @@ export default defineConfig(({ command }) => {
})
})
*/
// VitePWA({
// registerType: 'autoUpdate',
// devOptions: {
// enabled: false,
// },
// manifest: {
// name: "open-gsio",
// short_name: "open-gsio",
// description: "Assistant"
// },
// workbox: {
// globPatterns: ['**/*.{js,css,html,ico,png,svg}'],
// navigateFallbackDenylist: [/^\/api\//],
// }
// })
],
workbox: {
globPatterns: ['**/*.{js,css,html,ico,png,svg,wasm}'],
navigateFallbackDenylist: [/^\/api\//],
maximumFileSizeToCacheInBytes: 25000000,
cacheId: buildId,
cleanupOutdatedCaches: true,
clientsClaim: true,
},
server: {
port: 3000,
proxy: {

View File

@@ -1,3 +0,0 @@
{
"name": "@open-gsio/analytics-worker"
}

View File

@@ -1,7 +1,6 @@
import { ServerCoordinator } from '@open-gsio/coordinators';
import Router from '@open-gsio/router';
import { error } from 'itty-router';
export { ServerCoordinator };
export default Router.Router().catch(error);
export default Router.Router();

View File

@@ -1,5 +1,5 @@
{
"$schema": "../../../node_modules/wrangler/config-schema.json",
"$schema": "https://workers.cloudflare.com/sites/config-schema.json",
"name": "open-gsio",
"assets": {
"binding": "ASSETS",
@@ -20,9 +20,9 @@
{
"binding": "KV_STORAGE",
// $ npx wrangler kv namespace create open-gsio
"id": "",
"id": "placeholderId",
// $ npx wrangler kv namespace create open-gsio --preview
"preview_id": ""
"preview_id": "placeholderIdPreview"
}
],
"migrations": [

View File

@@ -52,15 +52,13 @@ export function createRouter() {
// })
.get('/api/metrics*', async (r, e, c) => {
return new Response('ok');
// const { metricsService } = createRequestContext(e, c);
// return metricsService.handleMetricsRequest(r);
const { metricsService } = createRequestContext(e, c);
return metricsService.handleMetricsRequest(r);
})
.post('/api/metrics*', async (r, e, c) => {
return new Response('ok');
// const { metricsService } = createRequestContext(e, c);
// return metricsService.handleMetricsRequest(r);
const { metricsService } = createRequestContext(e, c);
return metricsService.handleMetricsRequest(r);
})
// renders the app

View File

@@ -15,12 +15,7 @@ find . -name ".wrangler" -type d -prune -exec rm -rf {} \;
# Remove build directories
find . -name "dist" -type d -prune -exec rm -rf {} \;
#-----
# crates/yachtpit uses a directory called build for staging assets so it can't be removed
#find . -name "build" -type d -prune -exec rm -rf {} \;
#-----
find . -name "build" -type d -prune -exec rm -rf {} \;
find . -name "fonts" -type d -prune -exec rm -rf {} \;

View File

@@ -2,8 +2,8 @@
"name": "@open-gsio/server",
"type": "module",
"scripts": {
"dev": "bun --watch src/server/server.ts",
"build": "bun ./src/server/build.ts"
"dev": "bun src/server/server.ts",
"build": "bun run src/server/build.ts"
},
"devDependencies": {
"@open-gsio/env": "workspace:*",
@@ -24,11 +24,8 @@
"mobx-state-tree": "^6.0.1",
"moo": "^0.5.2",
"typescript": "^5.7.2",
"vike": "0.4.235",
"vite": "^7.0.0",
"vike": "0.4.193",
"zod": "^3.23.8",
"dotenv": "^17.0.0",
"bun": "^1.2.17",
"@types/bun": "^1.2.17"
"dotenv": "^16.5.0"
}
}

View File

@@ -1,53 +0,0 @@
import { readdir } from 'node:fs/promises';
export const assetHandler = {
ASSETS: {
/**
* Fetches the requested static asset from local dist
*
* @param {Request} request - The incoming Fetch API Request object.
* @returns {Promise<Response>} A Promise that resolves with the Response for the requested asset,
* or a 404 Response if the asset is not found or an error occurs.
*/
async fetch(request: Request): Promise<Response> {
// Serialize incoming request URL
const originalUrl = new URL(request.url);
const url = new URL(request.url);
// Fixed path: go up to packages level, then to client/public
const PUBLIC_DIR = new URL('../../../client/public/', import.meta.url).pathname;
let publicFiles: string[] = [];
try {
publicFiles = await readdir(PUBLIC_DIR, { recursive: true });
} catch (error) {
console.warn(`Could not read public directory ${PUBLIC_DIR}:`, error);
// Continue without public files list
}
// Get the filename from pathname and remove any path traversal attempts
const filename = url.pathname.split('/').pop()?.replace(/\.\./g, '') || '';
const isStatic = publicFiles.some(file => file === filename);
if (url.pathname === '/') {
url.pathname = '/index.html';
} else if (isStatic && !url.pathname.startsWith('/static')) {
// leave it alone
} else if (isStatic) {
url.pathname = `/static${url.pathname}`;
}
// Fixed path: go up to packages level, then to client/dist/client
const dist = new URL('../../../client/dist/client', import.meta.url).pathname;
try {
return new Response(Bun.file(`${dist}${url.pathname}`));
} catch (error) {
// Log the error with the original requested path
console.error(`Error reading asset from path ${originalUrl.pathname}:`, error);
return new Response(null, { status: 404 });
}
},
},
};

View File

@@ -1,10 +1,9 @@
// handles builds the server into js
await Bun.build({
entrypoints: [import.meta.dir + '/server.ts'],
outdir: './dist', // Changed from '../dist' to './dist'
entrypoints: ['./server.ts'],
outdir: '../dist',
minify: true,
target: 'node',
splitting: true,
format: 'esm', // Explicitly set ESM format
throw: true,
external: ['@open-gsio/client'], // Mark client as external to avoid bundling issues
});

View File

@@ -1,61 +0,0 @@
import ServerCoordinator from '@open-gsio/coordinators/src/ServerCoordinatorBun.ts';
import Router from '@open-gsio/router';
import { config } from 'dotenv';
import type { RequestLike } from 'itty-router';
import { error } from 'itty-router';
import { BunSqliteKVNamespace } from '../storage/BunSqliteKVNamespace.ts';
import { assetHandler } from './asset-handler.ts';
export function createServer() {
const router = Router.Router();
config({
path: '.env',
debug: true,
// defaults: {
// EVENTSOURCE_HOST: "https://eventsource.seemueller.io",
// }
});
// bootstrap the root path of the existing router to the asset handler defined here
router.get('/', async (request: RequestLike, env: any) => {
return await assetHandler.ASSETS.fetch(request as Request);
});
const server = {
port: 3003,
fetch: async (request: RequestLike, env: { [key: string]: any }, ctx: any) => {
// console.log("[trace] request: ", request.method, request.url, "headers: ", request.headers.get("referer"), "body: ", request.body, "env: ", env, "ctx: ", ctx, "")
env['SERVER_COORDINATOR'] = ServerCoordinator;
env['ASSETS'] = assetHandler.ASSETS;
env['EVENTSOURCE_HOST'] = process.env.EVENTSOURCE_HOST;
env['GROQ_API_KEY'] = process.env.GROQ_API_KEY;
env['ANTHROPIC_API_KEY'] = process.env.ANTHROPIC_API_KEY;
env['FIREWORKS_API_KEY'] = process.env.FIREWORKS_API_KEY;
env['XAI_API_KEY'] = process.env.XAI_API_KEY;
env['CEREBRAS_API_KEY'] = process.env.CEREBRAS_API_KEY;
env['CLOUDFLARE_API_KEY'] = process.env.CLOUDFLARE_API_KEY;
env['CLOUDFLARE_ACCOUNT_ID'] = process.env.CLOUDFLARE_ACCOUNT_ID;
env['MLX_API_KEY'] = process.env.MLX_API_KEY;
env['OLLAMA_API_KEY'] = process.env.OLLAMA_API_KEY;
env['KV_STORAGE'] = new BunSqliteKVNamespace({ namespace: 'open-gsio' });
try {
const controller = new AbortController();
const timeout = new Promise((_, reject) =>
setTimeout(() => {
controller.abort();
reject(new Error('Request timeout after 5s'));
}, 5000),
);
return await Promise.race([router.fetch(request, env, ctx).catch(error), timeout]);
} catch (e) {
console.error('Error handling request:', e);
return new Response('Server Error', { status: 500 });
}
},
};
return { server, router, assetHandler };
}

View File

@@ -1,6 +1,98 @@
import { createServer } from './create-server.ts';
import { readdir } from 'node:fs/promises';
// creates a bun server with the itty router
const { server } = createServer();
import ServerCoordinator from '@open-gsio/coordinators/src/ServerCoordinatorBun.ts';
import Router from '@open-gsio/router';
import { config } from 'dotenv';
import type { RequestLike } from 'itty-router';
export default server;
import { BunSqliteKVNamespace } from '../storage/BunSqliteKVNamespace.ts';
const router = Router.Router();
config({
path: '.env',
debug: true,
// defaults: {
// EVENTSOURCE_HOST: "https://eventsource.seemueller.io",
// }
});
export default {
port: 3003,
fetch: async (request: RequestLike, env: { [key: string]: any }, ctx: any) => {
// console.log("[trace] request: ", request.method, request.url, "headers: ", request.headers.get("referer"), "body: ", request.body, "env: ", env, "ctx: ", ctx, "")
env['SERVER_COORDINATOR'] = ServerCoordinator;
env['ASSETS'] = assetHandler.ASSETS;
env['EVENTSOURCE_HOST'] = process.env.EVENTSOURCE_HOST;
env['GROQ_API_KEY'] = process.env.GROQ_API_KEY;
env['ANTHROPIC_API_KEY'] = process.env.ANTHROPIC_API_KEY;
env['FIREWORKS_API_KEY'] = process.env.FIREWORKS_API_KEY;
env['XAI_API_KEY'] = process.env.XAI_API_KEY;
env['CEREBRAS_API_KEY'] = process.env.CEREBRAS_API_KEY;
env['CLOUDFLARE_API_KEY'] = process.env.CLOUDFLARE_API_KEY;
env['CLOUDFLARE_ACCOUNT_ID'] = process.env.CLOUDFLARE_ACCOUNT_ID;
env['MLX_API_KEY'] = process.env.MLX_API_KEY;
env['OLLAMA_API_KEY'] = process.env.OLLAMA_API_KEY;
env['KV_STORAGE'] = new BunSqliteKVNamespace({ namespace: 'open-gsio' });
try {
const controller = new AbortController();
const timeout = new Promise((_, reject) =>
setTimeout(() => {
controller.abort();
reject(new Error('Request timeout after 5s'));
}, 5000),
);
return await Promise.race([router.fetch(request, env, ctx), timeout]);
} catch (e) {
console.error('Error handling request:', e);
return new Response('Server Error', { status: 500 });
}
},
};
export const assetHandler = {
ASSETS: {
/**
* Fetches the requested static asset from local dist
*
* @param {Request} request - The incoming Fetch API Request object.
* @returns {Promise<Response>} A Promise that resolves with the Response for the requested asset,
* or a 404 Response if the asset is not found or an error occurs.
*/
async fetch(request: Request): Promise<Response> {
// Serialize incoming request URL
const originalUrl = new URL(request.url);
const url = new URL(request.url);
// List all files in the public directory
const PUBLIC_DIR = new URL('../client/public/', import.meta.url).pathname;
const publicFiles = await readdir(PUBLIC_DIR, { recursive: true });
// Get the filename from pathname and remove any path traversal attempts
const filename = url.pathname.split('/').pop()?.replace(/\.\./g, '') || '';
const isStatic = publicFiles.some(file => file === filename);
if (url.pathname === '/') {
url.pathname = '/index.html';
} else if (isStatic && !url.pathname.startsWith('/static')) {
// leave it alone
} else if (isStatic) {
url.pathname = `/static${url.pathname}`;
}
const dist = new URL('../client/dist/client', import.meta.url).pathname;
try {
return new Response(Bun.file(`${dist}${url.pathname}`));
} catch (error) {
// Log the error with the original requested path
console.error(`Error reading asset from path ${originalUrl.pathname}:`, error);
return new Response(null, { status: 404 });
}
},
},
};

View File

@@ -4,12 +4,9 @@ import { configDefaults } from 'vitest/config';
export default defineConfig(({ command }) => {
return {
build: {
cssMinify: 'esbuild',
},
test: {
globals: true,
environment: 'node',
environment: 'jsdom',
registerNodeLoader: false,
// setupFiles: ['./src/test/setup.ts'],
exclude: [...configDefaults.exclude, 'dist/**', '.open-gsio/**'],

View File

@@ -39,6 +39,6 @@
"vitest": "^3.1.4",
"wrangler": "^4.18.0",
"zod": "^3.23.8",
"dotenv": "^17.0.0"
"dotenv": "^16.5.0"
}
}

View File

@@ -37,18 +37,6 @@ vi.mock('../../lib/handleStreamData', () => ({
default: vi.fn().mockReturnValue(() => {}),
}));
// Mock ProviderRepository
vi.mock('@open-gsio/ai/providers/_ProviderRepository.ts', () => {
return {
ProviderRepository: class {
constructor() {}
getProviders() {
return [{ name: 'openai', key: 'test-key', endpoint: 'https://api.openai.com/v1' }];
}
},
};
});
describe('ChatService', () => {
let chatService: any;
let mockEnv: any;
@@ -233,105 +221,6 @@ describe('ChatService', () => {
Response.json = originalResponseJson;
localService.getSupportedModels = originalGetSupportedModels;
});
it('should test the cache refresh mechanism when providers change', async () => {
// This test verifies that the cache is refreshed when providers change
// and that the cache is used when providers haven't changed.
// Mock data for the first scenario (cache hit)
const cachedModels = [
{ id: 'model-1', provider: 'openai' },
{ id: 'model-2', provider: 'openai' },
];
const providersSignature = JSON.stringify(['openai']);
// Mock KV_STORAGE for the first scenario (cache hit)
const mockKVStorage = {
get: vi.fn().mockImplementation(key => {
if (key === 'supportedModels') return Promise.resolve(JSON.stringify(cachedModels));
if (key === 'providersSignature') return Promise.resolve(providersSignature);
return Promise.resolve(null);
}),
put: vi.fn().mockResolvedValue(undefined),
};
// The ProviderRepository is already mocked at the top of the file
// Create a service instance with the mocked environment
const service = ChatService.create({
maxTokens: 2000,
systemPrompt: 'You are a helpful assistant.',
});
// Set up the environment with the mocked KV_STORAGE
service.setEnv({
...mockEnv,
KV_STORAGE: mockKVStorage,
});
// Scenario 1: Cache hit - providers haven't changed
const response1 = await service.getSupportedModels();
const data1 = await response1.json();
// Verify the cache was used
expect(mockKVStorage.get).toHaveBeenCalledWith('supportedModels');
expect(mockKVStorage.get).toHaveBeenCalledWith('providersSignature');
expect(data1).toEqual(cachedModels);
expect(mockKVStorage.put).not.toHaveBeenCalled();
// Reset the mock calls for the next scenario
vi.clearAllMocks();
// Scenario 2: Cache miss - providers have changed
// Update the mock to return a different providers signature
mockKVStorage.get.mockImplementation(key => {
if (key === 'supportedModels') {
return Promise.resolve(JSON.stringify(cachedModels));
}
if (key === 'providersSignature') {
// Different signature
return Promise.resolve(JSON.stringify(['openai', 'anthropic']));
}
return Promise.resolve(null);
});
// Mock the provider models fetching to avoid actual API calls
const mockModels = [
{ id: 'new-model-1', provider: 'openai' },
{ id: 'new-model-2', provider: 'openai' },
];
// Mock OpenAI instance for the second scenario
const mockOpenAIInstance = {
models: {
list: vi.fn().mockResolvedValue({
data: mockModels,
}),
retrieve: vi.fn().mockImplementation(id => {
return Promise.resolve({ id, provider: 'openai' });
}),
},
};
// Update the OpenAI mock
vi.mocked(OpenAI).mockImplementation(() => mockOpenAIInstance as any);
// Call getSupportedModels again
const response2 = await service.getSupportedModels();
// Verify the cache was refreshed
expect(mockKVStorage.get).toHaveBeenCalledWith('supportedModels');
expect(mockKVStorage.get).toHaveBeenCalledWith('providersSignature');
expect(mockKVStorage.put).toHaveBeenCalledTimes(2); // Called twice: once for models, once for signature
expect(mockKVStorage.put).toHaveBeenCalledWith('supportedModels', expect.any(String), {
expirationTtl: 60 * 60 * 24,
});
expect(mockKVStorage.put).toHaveBeenCalledWith('providersSignature', expect.any(String), {
expirationTtl: 60 * 60 * 24,
});
// No need to restore mocks as we're using vi.mock at the module level
});
});
// TODO: Fix this test suite

View File

@@ -118,19 +118,11 @@ const ChatService = types
const useCache = true;
// Create a signature of the current providers
const providerRepo = new ProviderRepository(self.env);
const providers = providerRepo.getProviders();
const currentProvidersSignature = JSON.stringify(providers.map(p => p.name).sort());
if (useCache) {
// ----- 1. Try cached value ---------------------------------------------
try {
const cached = yield self.env.KV_STORAGE.get('supportedModels');
const cachedSignature = yield self.env.KV_STORAGE.get('providersSignature');
// Check if cache exists and providers haven't changed
if (cached && cachedSignature && cachedSignature === currentProvidersSignature) {
if (cached) {
const parsed = JSON.parse(cached as string);
if (Array.isArray(parsed) && parsed.length > 0) {
logger.info('Cache hit returning supportedModels from KV');
@@ -138,11 +130,6 @@ const ChatService = types
}
logger.warn('Cache entry malformed refreshing');
throw new Error('Malformed cache entry');
} else if (
cached &&
(!cachedSignature || cachedSignature !== currentProvidersSignature)
) {
logger.info('Providers changed refreshing cache');
}
} catch (err) {
logger.warn('Error reading/parsing supportedModels cache', err);
@@ -150,6 +137,8 @@ const ChatService = types
}
// ----- 2. Build fresh list ---------------------------------------------
const providerRepo = new ProviderRepository(self.env);
const providers = providerRepo.getProviders();
const providerModels = new Map<string, any[]>();
const modelMeta = new Map<string, any>();
@@ -161,29 +150,19 @@ const ChatService = types
const openai = new OpenAI({ apiKey: provider.key, baseURL: provider.endpoint });
const basicFilters = (model: any) => {
return (
!model.id.includes('whisper') &&
!model.id.includes('flux') &&
!model.id.includes('ocr') &&
!model.id.includes('tts') &&
!model.id.includes('guard')
);
}; // 2a. List models
// 2a. List models
try {
const listResp: any = yield openai.models.list(); // < async
const models = 'data' in listResp ? listResp.data : listResp;
providerModels.set(
provider.name,
models.filter((mdl: any) => {
if ('supports_chat' in mdl && mdl.supports_chat) {
return basicFilters(mdl);
} else if ('supports_chat' in mdl && !mdl.supports_chat) {
return false;
}
return basicFilters(mdl);
}),
models.filter(
(mdl: any) =>
!mdl.id.includes('whisper') &&
!mdl.id.includes('tts') &&
!mdl.id.includes('guard'),
),
);
// 2b. Retrieve metadata
@@ -216,20 +195,11 @@ const ChatService = types
// ----- 4. Cache fresh list ---------------------------------------------
try {
// Store the models
yield self.env.KV_STORAGE.put(
'supportedModels',
JSON.stringify(resultArr),
{ expirationTtl: 60 * 60 * 24 }, // 24 hours
{ expirationTtl: 60 * 60 * 24 }, // 24
);
// Store the providers signature
yield self.env.KV_STORAGE.put(
'providersSignature',
currentProvidersSignature,
{ expirationTtl: 60 * 60 * 24 }, // 24 hours
);
logger.info('supportedModels cache refreshed');
} catch (err) {
logger.error('KV put failed for supportedModels', err);
@@ -328,8 +298,7 @@ const ChatService = types
);
}
if (message.includes('404')) {
console.log(message);
throw new ClientError(`Something went wrong, try again.`, 404, {});
throw new ClientError(`Something went wrong, try again.`, 413, {});
}
throw error;
}