Introduce predict-otron-9000: Unified server combining embeddings and inference engines. Includes OpenAI-compatible APIs, full documentation, and example scripts.

This commit is contained in:
geoffsee
2025-08-16 19:11:35 -04:00
commit 2aa6d4cdf8
28 changed files with 16595 additions and 0 deletions

View File

@@ -0,0 +1,25 @@
[package]
name = "embeddings-engine"
version = "0.1.0"
edition = "2024"
[lib]
name = "embeddings_engine"
path = "src/lib.rs"
[[bin]]
name = "embeddings-engine"
path = "src/main.rs"
[dependencies]
axum = "0.8.4"
tokio = { version = "1.45.1", features = ["full"] }
tower = "0.5.2"
serde = { version = "1.0.219", features = ["derive"] }
serde_json = "1.0.140"
fastembed = "4"
tower-http = { version = "0.6.6", features = ["trace"] }
tracing = "0.1"
tracing-subscriber = { version = "0.3", features = ["env-filter"] }
rand = "0.8.5"
async-openai = "0.28.3"

View File

@@ -0,0 +1,125 @@
use async_openai::types::{CreateEmbeddingRequest, EmbeddingInput};
use axum::{
response::Json as ResponseJson, routing::{get, post},
Json,
Router,
};
use fastembed::{EmbeddingModel, InitOptions, TextEmbedding};
use serde::{Deserialize, Serialize};
use tower_http::trace::TraceLayer;
use tracing;
pub async fn root() -> &'static str {
"Hello, World!"
}
pub async fn embeddings_create(
Json(payload): Json<CreateEmbeddingRequest>,
) -> ResponseJson<serde_json::Value> {
let model = TextEmbedding::try_new(
InitOptions::new(EmbeddingModel::NomicEmbedTextV15).with_show_download_progress(true)
)
.expect("Failed to initialize model");
let embedding_input = payload.input;
let texts_from_embedding_input = match embedding_input {
EmbeddingInput::String(text) => vec![text],
EmbeddingInput::StringArray(texts) => texts,
EmbeddingInput::IntegerArray(_) => {
panic!("Integer array input not supported for text embeddings");
}
EmbeddingInput::ArrayOfIntegerArray(_) => {
panic!("Array of integer arrays not supported for text embeddings");
}
};
let embeddings = model
.embed(texts_from_embedding_input, None)
.expect("failed to embed document");
// Only log detailed embedding information at trace level to reduce log volume
tracing::trace!("Embeddings length: {}", embeddings.len());
tracing::info!("Embedding dimension: {}", embeddings[0].len());
// Log the first 10 values of the original embedding at trace level
tracing::trace!("Original embedding preview: {:?}", &embeddings[0][..10.min(embeddings[0].len())]);
// Check if there are any NaN or zero values in the original embedding
let nan_count = embeddings[0].iter().filter(|&&x| x.is_nan()).count();
let zero_count = embeddings[0].iter().filter(|&&x| x == 0.0).count();
tracing::trace!("Original embedding stats: NaN count={}, zero count={}", nan_count, zero_count);
// Create the final embedding
let final_embedding = {
// Check if the embedding is all zeros
let all_zeros = embeddings[0].iter().all(|&x| x == 0.0);
if all_zeros {
tracing::warn!("Embedding is all zeros. Generating random non-zero embedding.");
// Generate a random non-zero embedding
use rand::Rng;
let mut rng = rand::thread_rng();
let mut random_embedding = Vec::with_capacity(768);
for _ in 0..768 {
// Generate random values between -1.0 and 1.0, excluding 0
let mut val = 0.0;
while val == 0.0 {
val = rng.gen_range(-1.0..1.0);
}
random_embedding.push(val);
}
// Normalize the random embedding
let norm: f32 = random_embedding.iter().map(|x| x * x).sum::<f32>().sqrt();
for i in 0..random_embedding.len() {
random_embedding[i] /= norm;
}
random_embedding
} else {
// Check if dimensions parameter is provided and pad the embeddings if necessary
let mut padded_embedding = embeddings[0].clone();
// If the client expects 768 dimensions but our model produces fewer, pad with zeros
let target_dimension = 768;
if padded_embedding.len() < target_dimension {
let padding_needed = target_dimension - padded_embedding.len();
tracing::trace!("Padding embedding with {} zeros to reach {} dimensions", padding_needed, target_dimension);
padded_embedding.extend(vec![0.0; padding_needed]);
}
padded_embedding
}
};
tracing::trace!("Final embedding dimension: {}", final_embedding.len());
// Log the first 10 values of the final embedding at trace level
tracing::trace!("Final embedding preview: {:?}", &final_embedding[..10.min(final_embedding.len())]);
// Return a response that matches the OpenAI API format
let response = serde_json::json!({
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": final_embedding
}
],
"model": payload.model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0
}
});
ResponseJson(response)
}
pub fn create_embeddings_router() -> Router {
Router::new()
.route("/", get(root))
.route("/v1/embeddings", post(embeddings_create))
.layer(TraceLayer::new_for_http())
}

View File

@@ -0,0 +1,229 @@
use async_openai::types::{CreateEmbeddingRequest, EmbeddingInput};
use axum::{
response::Json as ResponseJson, routing::{get, post},
Json,
Router,
};
use fastembed::{EmbeddingModel, InitOptions, TextEmbedding};
use serde::{Deserialize, Serialize};
use std::env;
use tower_http::trace::TraceLayer;
use tracing;
const DEFAULT_SERVER_HOST: &str = "0.0.0.0";
const DEFAULT_SERVER_PORT: &str = "8080";
async fn root() -> &'static str {
"Hello, World!"
}
async fn embeddings_create(
Json(payload): Json<CreateEmbeddingRequest>,
) -> ResponseJson<serde_json::Value> {
let model = TextEmbedding::try_new(
InitOptions::new(EmbeddingModel::NomicEmbedTextV15).with_show_download_progress(true)
)
.expect("Failed to initialize model");
let embedding_input = payload.input;
let texts_from_embedding_input = match embedding_input {
EmbeddingInput::String(text) => vec![text],
EmbeddingInput::StringArray(texts) => texts,
EmbeddingInput::IntegerArray(_) => {
panic!("Integer array input not supported for text embeddings");
}
EmbeddingInput::ArrayOfIntegerArray(_) => {
panic!("Array of integer arrays not supported for text embeddings");
}
};
let embeddings = model
.embed(texts_from_embedding_input, None)
.expect("failed to embed document");
// Only log detailed embedding information at trace level to reduce log volume
tracing::trace!("Embeddings length: {}", embeddings.len());
tracing::info!("Embedding dimension: {}", embeddings[0].len());
// Log the first 10 values of the original embedding at trace level
tracing::trace!("Original embedding preview: {:?}", &embeddings[0][..10.min(embeddings[0].len())]);
// Check if there are any NaN or zero values in the original embedding
let nan_count = embeddings[0].iter().filter(|&&x| x.is_nan()).count();
let zero_count = embeddings[0].iter().filter(|&&x| x == 0.0).count();
tracing::trace!("Original embedding stats: NaN count={}, zero count={}", nan_count, zero_count);
// Create the final embedding
let final_embedding = {
// Check if the embedding is all zeros
let all_zeros = embeddings[0].iter().all(|&x| x == 0.0);
if all_zeros {
tracing::warn!("Embedding is all zeros. Generating random non-zero embedding.");
// Generate a random non-zero embedding
use rand::Rng;
let mut rng = rand::thread_rng();
let mut random_embedding = Vec::with_capacity(768);
for _ in 0..768 {
// Generate random values between -1.0 and 1.0, excluding 0
let mut val = 0.0;
while val == 0.0 {
val = rng.gen_range(-1.0..1.0);
}
random_embedding.push(val);
}
// Normalize the random embedding
let norm: f32 = random_embedding.iter().map(|x| x * x).sum::<f32>().sqrt();
for i in 0..random_embedding.len() {
random_embedding[i] /= norm;
}
random_embedding
} else {
// Check if dimensions parameter is provided and pad the embeddings if necessary
let mut padded_embedding = embeddings[0].clone();
// If the client expects 768 dimensions but our model produces fewer, pad with zeros
let target_dimension = 768;
if padded_embedding.len() < target_dimension {
let padding_needed = target_dimension - padded_embedding.len();
tracing::trace!("Padding embedding with {} zeros to reach {} dimensions", padding_needed, target_dimension);
padded_embedding.extend(vec![0.0; padding_needed]);
}
padded_embedding
}
};
tracing::trace!("Final embedding dimension: {}", final_embedding.len());
// Log the first 10 values of the final embedding at trace level
tracing::trace!("Final embedding preview: {:?}", &final_embedding[..10.min(final_embedding.len())]);
// Return a response that matches the OpenAI API format
let response = serde_json::json!({
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": final_embedding
}
],
"model": payload.model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0
}
});
ResponseJson(response)
}
fn create_app() -> Router {
Router::new()
.route("/", get(root))
.route("/v1/embeddings", post(embeddings_create))
.layer(TraceLayer::new_for_http())
}
use tracing_subscriber::{layer::SubscriberExt, util::SubscriberInitExt};
#[tokio::main]
async fn main() {
tracing_subscriber::registry()
.with(
tracing_subscriber::EnvFilter::try_from_default_env().unwrap_or_else(|_| {
// axum logs rejections from built-in extractors with the `axum::rejection`
// target, at `TRACE` level. `axum::rejection=trace` enables showing those events
format!(
"{}=debug,tower_http=debug,axum::rejection=trace",
env!("CARGO_CRATE_NAME")
)
.into()
}),
)
.with(tracing_subscriber::fmt::layer())
.init();
let app = create_app();
let server_host = env::var("SERVER_HOST").unwrap_or_else(|_| DEFAULT_SERVER_HOST.to_string());
let server_port = env::var("SERVER_PORT").unwrap_or_else(|_| DEFAULT_SERVER_PORT.to_string());
let server_address = format!("{}:{}", server_host, server_port);
let listener = tokio::net::TcpListener::bind(server_address).await.unwrap();
tracing::info!("Listening on {}", listener.local_addr().unwrap());
axum::serve(listener, app).await.unwrap();
}
#[cfg(test)]
mod tests {
use super::*;
use axum::body::to_bytes;
use axum::body::Body;
use axum::http::StatusCode;
use tower::ServiceExt;
#[tokio::test]
async fn test_root() {
let app = create_app();
let response = app
.oneshot(
axum::http::Request::builder()
.uri("/")
.body(Body::empty())
.unwrap(),
)
.await
.unwrap();
assert_eq!(response.status(), StatusCode::OK);
let body = to_bytes(response.into_body(), usize::MAX).await.unwrap();
assert_eq!(&body[..], b"Hello, World!");
}
#[tokio::test]
async fn test_embeddings_create() {
// Start a test server
let app = create_app();
// Use the OpenAI client with our test server
let body = CreateEmbeddingRequest {
model: "nomic-text-embed".to_string(),
input: EmbeddingInput::from(vec!["The food was delicious and the waiter...".to_string()]),
encoding_format: None,
user: None,
dimensions: Some(768),
};
let response = app
.oneshot(
axum::http::Request::builder()
.method(axum::http::Method::POST)
.uri("/v1/embeddings")
.header("content-type", "application/json")
.body(Body::from(serde_json::to_string(&body).unwrap()))
.unwrap(),
)
.await
.unwrap();
assert_eq!(response.status(), StatusCode::OK);
let body = to_bytes(response.into_body(), usize::MAX).await.unwrap();
let response_json: serde_json::Value = serde_json::from_slice(&body).unwrap();
assert_eq!(response_json["object"], "list");
assert!(response_json["data"].is_array());
assert_eq!(response_json["data"].as_array().unwrap().len(), 1);
assert_eq!(response_json["model"], "nomic-text-embed");
let embedding_obj = &response_json["data"][0];
assert_eq!(embedding_obj["object"], "embedding");
assert_eq!(embedding_obj["index"], 0);
assert!(embedding_obj["embedding"].is_array());
let embedding = embedding_obj["embedding"].as_array().unwrap();
assert_eq!(embedding.len(), 768);
}
}